IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.10162.html
   My bibliography  Save this paper

An Exploration to the Correlation Structure and Clustering of Macroeconomic Variables

Author

Listed:
  • Garvit Arora
  • Shubhangi Tiwari
  • Ying Wu
  • Xuan Mei

Abstract

As a quantitative characterization of the complicated economy, Macroeconomic Variables (MEVs), including GDP, inflation, unemployment, income, spending, interest rate, etc., are playing a crucial role in banks' portfolio management and stress testing exercise. In recent years, especially during the COVID-19 period and the current high inflation environment, people are frequently talking about the changing "correlation structure" of MEVs. In this paper, we use a principal component based algorithm to perform unsupervised clustering on MEVs so we can quantify and better understand MEVs' correlation structure in any given period. We also demonstrate how this method can be used to visualize historical MEVs pattern changes between 2000 and 2022. Further, we use this method to compare different hypothetical and/or historical macroeconomic scenarios and present our key findings. One of these interesting observations is that, for a list of 132 transformations derived from 44 targeted MEVs that cover 5 different aspects of the U.S. economy (which takes as a subset the 10+ key MEVs published by FRB), compared to benign years where there are typically 20-25 clusters, during the great financial crisis (GFC), i.e., 2007-2010, they exhibited a more synchronized and less diversified pattern of movement, forming roughly 15 clusters. We also see this contrast in the hypothetical CCAR2023 FRB scenarios where the Severely Adverse scenario has 15 clusters and the Baseline scenario has 21 clusters. We provide our interpretation to this observation and hope this research can inspire and benefit researchers from different domains all over the world.

Suggested Citation

  • Garvit Arora & Shubhangi Tiwari & Ying Wu & Xuan Mei, 2024. "An Exploration to the Correlation Structure and Clustering of Macroeconomic Variables," Papers 2401.10162, arXiv.org, revised May 2024.
  • Handle: RePEc:arx:papers:2401.10162
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.10162
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    2. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    3. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    2. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    3. Doruk Cengiz & Arindrajit Dube & Attila S. Lindner & David Zentler-Munro, 2021. "Seeing Beyond the Trees: Using Machine Learning to Estimate the Impact of Minimum Wages on Labor Market Outcomes," NBER Working Papers 28399, National Bureau of Economic Research, Inc.
    4. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    5. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    6. Thitiphat Klinsuwan & Wachiraphong Ratiphaphongthon & Rabian Wangkeeree & Rattanaporn Wangkeeree & Chatchai Sirisamphanwong, 2023. "Evaluation of Machine Learning Algorithms for Supervised Anomaly Detection and Comparison between Static and Dynamic Thresholds in Photovoltaic Systems," Energies, MDPI, vol. 16(4), pages 1-22, February.
    7. Daan Kolkman & Arjen van Witteloostuijn, 2019. "Data Science in Strategy: Machine learning and text analysis in the study of firm growth," Tinbergen Institute Discussion Papers 19-066/VI, Tinbergen Institute.
    8. Maria-Carmen García-Centeno & Román Mínguez-Salido & Raúl del Pozo-Rubio, 2021. "The Classification of Profiles of Financial Catastrophe Caused by Out-of-Pocket Payments: A Methodological Approach," Mathematics, MDPI, vol. 9(11), pages 1-20, May.
    9. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    10. Konrad Bogner & Florian Pappenberger & Massimiliano Zappa, 2019. "Machine Learning Techniques for Predicting the Energy Consumption/Production and Its Uncertainties Driven by Meteorological Observations and Forecasts," Sustainability, MDPI, vol. 11(12), pages 1-22, June.
    11. Huei-Wen Teng & Yu-Hsien Li, 2023. "Can deep neural networks outperform Fama-MacBeth regression and other supervised learning approaches in stock returns prediction with asset-pricing factors?," Digital Finance, Springer, vol. 5(1), pages 149-182, March.
    12. Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
    13. Keddouda, Abdelhak & Ihaddadene, Razika & Boukhari, Ali & Atia, Abdelmalek & Arıcı, Müslüm & Lebbihiat, Nacer & Ihaddadene, Nabila, 2024. "Photovoltaic module temperature prediction using various machine learning algorithms: Performance evaluation," Applied Energy, Elsevier, vol. 363(C).
    14. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    15. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    16. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    17. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    18. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    19. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    20. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.10162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.