IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.07070.html
   My bibliography  Save this paper

A Dynamic Agent Based Model of the Real Economy with Monopolistic Competition, Perfect Product Differentiation, Heterogeneous Agents, Increasing Returns to Scale and Trade in Disequilibrium

Author

Listed:
  • Subhamon Supantha
  • Naresh Kumar Sharma

Abstract

We have used agent-based modeling as our numerical method to artificially simulate a dynamic real economy where agents are rational maximizers of an objective function of Cobb-Douglas type. The economy is characterised by heterogeneous agents, acting out of local or imperfect information, monopolistic competition, perfect product differentiation, allowance for increasing returns to scale technology and trade in disequilibrium. An algorithm for economic activity in each period is devised and a general purpose open source agent-based model is developed which allows for counterfactual inquiries, testing out treatments, analysing causality of various economic processes, outcomes and studying emergent properties. 10,000 simulations, with 10 firms and 80 consumers are run with varying parameters and the results show that from only a few initial conditions the economy reaches equilibrium while in most of the other cases it remains in perpetual disequilibrium. It also shows that from a few initial conditions the economy reaches a disaster where all the consumer wealth falls to zero or only a single producer remains. Furthermore, from some initial conditions, an ideal economy with high wage rate, high consumer utility and no unemployment is also reached. It was also observed that starting from an equal endowment of wealth in consumers and in producers, inequality emerged in the economy. In majority of the cases most of the firms(6-7) shut down because they were not profitable enough and only a few firms remained. Our results highlight that all these varying outcomes are possible for a decentralized market economy with rational optimizing agents.

Suggested Citation

  • Subhamon Supantha & Naresh Kumar Sharma, 2024. "A Dynamic Agent Based Model of the Real Economy with Monopolistic Competition, Perfect Product Differentiation, Heterogeneous Agents, Increasing Returns to Scale and Trade in Disequilibrium," Papers 2401.07070, arXiv.org.
  • Handle: RePEc:arx:papers:2401.07070
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.07070
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joan Robinson, 1953. "The Production Function and the Theory of Capital," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 21(2), pages 81-106.
    2. Tesfatsion, Leigh, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 16, pages 831-880, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2016. "Does a small cost share reflect a negligible role for energy in economic production? Testing for aggregate production functions including capital, labor, and useful exergy through a cointegration-base," MPRA Paper 70850, University Library of Munich, Germany.
    2. Garbellini, Nadia, 2020. "Measurement without theory, and theory without measurement: What's wrong with Piketty's capital in the XXI century?," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 50-62.
    3. Klaus Jaffe, 2015. "Agent based simulations visualize Adam Smith's invisible hand by solving Friedrich Hayek's Economic Calculus," Papers 1509.04264, arXiv.org, revised Nov 2015.
    4. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    6. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    7. Mazouch, P. & Krejčí, I., 2016. "The Analysis of the Age Structure of Regional Fixed Capital in the Agriculture," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 8(2), pages 1-13, June.
    8. Liu, Beibei & He, Pan & Zhang, Bing & Bi, Jun, 2012. "Impacts of alternative allowance allocation methods under a cap-and-trade program in power sector," Energy Policy, Elsevier, vol. 47(C), pages 405-415.
    9. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    10. Blair Fix, 2019. "The Aggregation Problem: Implications for Ecological and Biophysical Economics," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-15, March.
    11. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.
    12. Qingxu Huang & Dawn C Parker & Tatiana Filatova & Shipeng Sun, 2014. "A Review of Urban Residential Choice Models Using Agent-Based Modeling," Environment and Planning B, , vol. 41(4), pages 661-689, August.
    13. Ashraf, Quamrul & Gershman, Boris & Howitt, Peter, 2017. "Banks, market organization, and macroeconomic performance: An agent-based computational analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 135(C), pages 143-180.
    14. Richard Holt & J. Barkley Rosser & David Colander, 2011. "The Complexity Era in Economics," Review of Political Economy, Taylor & Francis Journals, vol. 23(3), pages 357-369.
    15. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.
    16. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo & Möst, Dominik, 2007. "Agent-based simulation of electricity markets: a literature review," Working Papers "Sustainability and Innovation" S5/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    17. Jaime Páez Méndez, 2013. "Las contribuciones de Joan Robinson a la teoría económica y su vigencia," Documentos de Investigación - Economía 14058, Universidad Central.
    18. Доможиров Д. А. & Ибрагимов Н. М. & Мельникова Л. В. & Цыплаков А. А., 2017. "Интеграция подхода «затраты – выпуск» в агент-ориентированное моделирование. Часть 1. Методологические основы. Integration of input–output approach into agent-based modeling. Part 1. Methodological pr," Мир экономики и управления // Вестник НГУ. Cерия: Cоциально-экономические науки, Socionet;Новосибирский государственный университет, vol. 17(1), pages 86-99.
    19. Anna Rogozinska-Pawelczyk, 2022. "The Manager as an Organisation Agent during the Fourth Industrial Revolution," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 509-529.
    20. Hazan, Aurélien, 2017. "Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 589-602.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.07070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.