IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.07067.html
   My bibliography  Save this paper

High Dimensional Binary Choice Model with Unknown Heteroskedasticity or Instrumental Variables

Author

Listed:
  • Fu Ouyang
  • Thomas Tao Yang

Abstract

This paper proposes a new method for estimating high-dimensional binary choice models. The model we consider is semiparametric, placing no distributional assumptions on the error term, allowing for heteroskedastic errors, and permitting endogenous regressors. Our proposed approaches extend the special regressor estimator originally proposed by Lewbel (2000). This estimator becomes impractical in high-dimensional settings due to the curse of dimensionality associated with high-dimensional conditional density estimation. To overcome this challenge, we introduce an innovative data-driven dimension reduction method for nonparametric kernel estimators, which constitutes the main innovation of this work. The method combines distance covariance-based screening with cross-validation (CV) procedures, rendering the special regressor estimation feasible in high dimensions. Using the new feasible conditional density estimator, we address the variable and moment (instrumental variable) selection problems for these models. We apply penalized least squares (LS) and Generalized Method of Moments (GMM) estimators with a smoothly clipped absolute deviation (SCAD) penalty. A comprehensive analysis of the oracle and asymptotic properties of these estimators is provided. Monte Carlo simulations are employed to demonstrate the effectiveness of our proposed procedures in finite sample scenarios.

Suggested Citation

  • Fu Ouyang & Thomas Tao Yang, 2023. "High Dimensional Binary Choice Model with Unknown Heteroskedasticity or Instrumental Variables," Papers 2311.07067, arXiv.org.
  • Handle: RePEc:arx:papers:2311.07067
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.07067
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    2. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
    3. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    4. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    5. Liao, Zhipeng, 2013. "Adaptive Gmm Shrinkage Estimation With Consistent Moment Selection," Econometric Theory, Cambridge University Press, vol. 29(5), pages 857-904, October.
    6. Arthur Lewbel & Yingying Dong & Thomas Tao Yang, 2012. "Viewpoint: Comparing features of convenient estimators for binary choice models with endogenous regressors," Canadian Journal of Economics, Canadian Economics Association, vol. 45(3), pages 809-829, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Whelan, Adele & McGuinness, Seamus, 2017. "Does a satisfied student make a satisfied worker?," Papers WP561, Economic and Social Research Institute (ESRI).
    2. Manuel Denzer, 2019. "Estimating Causal Effects in Binary Response Models with Binary Endogenous Explanatory Variables - A Comparison of Possible Estimators," Working Papers 1916, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    3. M. T. Costa-Campi & N. Duch-Brown & Jose Garcia-Quevedo, 2024. "Drivers of Cooperation in Innovation by Energy Firms in Spain," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(12), pages 3387-3414, December.
    4. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    5. Prosper Donovon & Alastair R. Hall, 2015. "GMM and Indirect Inference: An appraisal of their connections and new results on their properties under second order identification," Economics Discussion Paper Series 1505, Economics, The University of Manchester.
    6. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    7. Ruyssen, Ilse & Salomone, Sara, 2018. "Female migration: A way out of discrimination?," Journal of Development Economics, Elsevier, vol. 130(C), pages 224-241.
    8. Byunghoon Kang, 2018. "Higher Order Approximation of IV Estimators with Invalid Instruments," Working Papers 257105320, Lancaster University Management School, Economics Department.
    9. Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
    10. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    11. Lin, Wei & Wooldridge, Jeffrey M., 2015. "On different approaches to obtaining partial effects in binary response models with endogenous regressors," Economics Letters, Elsevier, vol. 134(C), pages 58-61.
    12. Shi, Zhentao, 2016. "Econometric estimation with high-dimensional moment equalities," Journal of Econometrics, Elsevier, vol. 195(1), pages 104-119.
    13. Qingliang Fan & Zijian Guo & Ziwei Mei, 2022. "A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates," Papers 2205.00171, arXiv.org, revised May 2024.
    14. Hyunseung Kang & Youjin Lee & T. Tony Cai & Dylan S. Small, 2022. "Two robust tools for inference about causal effects with invalid instruments," Biometrics, The International Biometric Society, vol. 78(1), pages 24-34, March.
    15. Stefano Iandolo & Anna Ferragina, 2021. "International activities and innovation: Evidence from Italy with a special regressor approach," The World Economy, Wiley Blackwell, vol. 44(11), pages 3300-3325, November.
    16. Grilli, Luca & Murtinu, Samuele, 2018. "Selective subsidies, entrepreneurial founders' human capital, and access to R&D alliances," Research Policy, Elsevier, vol. 47(10), pages 1945-1963.
    17. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    18. Augusto Mendoza Calderón, 2017. "El Efecto del Empleo sobre la Violencia Doméstica: Evidencia para las Mujeres Peruanas," Working Papers 99, Peruvian Economic Association.
    19. Laetitia Duval & François-Charles Wolff, 2016. "Emigration intentions of Roma: evidence from Central and South-East Europe," Post-Communist Economies, Taylor & Francis Journals, vol. 28(1), pages 87-107, January.
    20. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.07067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.