IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.18836.html
   My bibliography  Save this paper

Cluster-Randomized Trials with Cross-Cluster Interference

Author

Listed:
  • Michael P. Leung

Abstract

The literature on cluster-randomized trials typically assumes no interference across clusters. This may be implausible when units are irregularly distributed in space without well-separated communities, in which case clusters may not represent significant geographic, social, or economic divisions. In this paper, we develop methods for reducing bias due to cross-cluster interference. First, we propose an estimation strategy that excludes units not surrounded by clusters assigned to the same treatment arm. We show that this substantially reduces asymptotic bias relative to conventional difference-in-means estimators without substantial cost to variance. Second, we formally establish a bias-variance trade-off in the choice of clusters: constructing fewer, larger clusters reduces bias due to interference but increases variance. We provide a rule for choosing the number of clusters to balance the asymptotic orders of the bias and variance of our estimator. Finally, we consider unsupervised learning for cluster construction and provide theoretical guarantees for $k$-medoids.

Suggested Citation

  • Michael P. Leung, 2023. "Cluster-Randomized Trials with Cross-Cluster Interference," Papers 2310.18836, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2310.18836
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.18836
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timothy B. Armstrong & Michal Kolesár, 2018. "Optimal Inference in a Class of Regression Models," Econometrica, Econometric Society, vol. 86(2), pages 655-683, March.
    2. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    3. Sandra M. Eldridge & Obioha C. Ukoumunne & John B. Carlin, 2009. "The Intra‐Cluster Correlation Coefficient in Cluster Randomized Trials: A Review of Definitions," International Statistical Review, International Statistical Institute, vol. 77(3), pages 378-394, December.
    4. Michael P. Leung, 2021. "Rate-Optimal Cluster-Randomized Designs for Spatial Interference," Papers 2111.04219, arXiv.org, revised Sep 2022.
    5. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    6. Neal Alexander & Audrey Lenhart & Karim Anaya-Izquierdo, 2020. "Spatial spillover analysis of a cluster-randomized trial against dengue vectors in Trujillo, Venezuela," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(9), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    2. Christopher Harshaw & Fredrik Savje & Yitan Wang, 2022. "A Design-Based Riesz Representation Framework for Randomized Experiments," Papers 2210.08698, arXiv.org, revised Oct 2022.
    3. Evan Munro & David Jones & Jennifer Brennan & Roland Nelet & Vahab Mirrokni & Jean Pouget-Abadie, 2023. "Causal Estimation of User Learning in Personalized Systems," Papers 2306.00485, arXiv.org.
    4. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    5. Cho, Guedae & Kim, MinKyoung & Koo, Won W., 2003. "Relative Agricultural Price Changes In Different Time Horizons," 2003 Annual meeting, July 27-30, Montreal, Canada 22249, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Berkowitz, J. & Birgean, I. & Kilian, L., 1999. "On the Finite-Sample Accuracy of Nonparametric Resampling Algorithms for Economic Time Series," Papers 99-01, Michigan - Center for Research on Economic & Social Theory.
    7. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    8. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    9. Antonia López Villavicencio & Josep Lluís Raymond Bara, 2006. "The short and long-run determinants of the real exchange rate in Mexico," Working Papers wpdea0606, Department of Applied Economics at Universitat Autonoma of Barcelona.
    10. Gruener Hans Peter & Hayo Bernd & Hefeker Carsten, 2009. "Unions, Wage Setting and Monetary Policy Uncertainty," The B.E. Journal of Macroeconomics, De Gruyter, vol. 9(1), pages 1-25, October.
    11. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    12. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2020. "Treatment Effects With Heterogeneous Externalities," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 826-838, October.
    13. Arturo Estrella & Anthony P. Rodrigues, 1998. "Consistent covariance matrix estimation in probit models with autocorrelated errors," Staff Reports 39, Federal Reserve Bank of New York.
    14. PAUL CASHIN & C. JOHN McDERMOTT, 1998. "Are Australia's Current Account Deficits Excessive?," The Economic Record, The Economic Society of Australia, vol. 74(227), pages 346-361, December.
    15. Wagner, Martin & Wied, Dominik, 2014. "Monitoring Stationarity and Cointegration," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100386, Verein für Socialpolitik / German Economic Association.
    16. Paul Cashin & C. McDermott, 2002. "Terms of Trade Shocks and the Current Account: Evidence from Five Industrial Countries," Open Economies Review, Springer, vol. 13(3), pages 219-235, July.
    17. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    18. Julia Reynolds & Leopold Sögner & Martin Wagner, 2021. "Deviations from Triangular Arbitrage Parity in Foreign Exchange and Bitcoin Markets," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 13(2), pages 105-146, June.
    19. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    20. Stephen G Cecchetti & Alfonso Flores-Lagunes & Stefan Krause, 2005. "Assessing the Sources of Changes in the Volatility of Real Growth," RBA Annual Conference Volume (Discontinued), in: Christopher Kent & David Norman (ed.),The Changing Nature of the Business Cycle, Reserve Bank of Australia.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.18836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.