IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v77y2009i3p378-394.html
   My bibliography  Save this article

The Intra‐Cluster Correlation Coefficient in Cluster Randomized Trials: A Review of Definitions

Author

Listed:
  • Sandra M. Eldridge
  • Obioha C. Ukoumunne
  • John B. Carlin

Abstract

The intra‐cluster correlation coefficient (ICC) of the primary outcome plays a key role in the design and analysis of cluster randomized trials (CRTs), but the precise definition of this parameter is somewhat elusive, especially in the context of non‐normally distributed outcomes. In this paper, we provide a unified treatment of ICC as used in CRTs. We present a general definition of the ICC that may be expressed in different ways depending on the modelling approach used to describe the data, illustrating how this general definition is applied to continuous and dichotomous outcomes. Greater complexity arises for dichotomous outcomes; in particular, the usual definition of the ICC cannot be related directly to the parameters of the logistic‐normal model that is commonly used for dichotomous outcomes. We show how the definition of the ICC is different when covariates are introduced. Finally, we use our framework and definition of the ICC to draw out implications for those interpreting and choosing values of the ICC when planning CRTs. Le coefficient de corrélation intraclasse (CCI) associé au critère de jugement principal joue un rôle majeur lors de la planification et de l'analyse des essais randomisés en clusters, mais la définition précise de ce paramètre reste malgré tout évasive, notamment lorsque les données ne sont pas normalement distribuées. Dans cet article, nous proposons de gérer les CCI utilisés dans le cadre des essais en cluster d'une façon uniforme. Nous présentons une définition générale du CCI qui peut s'exprimer différemment selon le modèle statistique utilisé, notamment lorsqu'il s'agit d'un modèle à corrélation commune ou d'un modèle hiérarchique. Nous montrons comment cette définition générale s'applique aussi bien à des données continues qu'à des données binaires. Le niveau de complexité est plus important lorsqu'il s'agit de données binaires; en particulier, le CCI usuel ne peut être liée directement aux paramètres du modèle de régression logistique classiquement utilisé pour les données binaires. Nous montrons que le CCI se définit différemment lorsque des covariables sont prises en compte. Enfin, nous utilisons la définition générale du CCI que nous proposons pour en tirer des conséquences lorsqu'il s'agit d'interpréter un CCI ou d'en fixer une valeur lors de la planification d'un essai randomisé en cluster.

Suggested Citation

  • Sandra M. Eldridge & Obioha C. Ukoumunne & John B. Carlin, 2009. "The Intra‐Cluster Correlation Coefficient in Cluster Randomized Trials: A Review of Definitions," International Statistical Review, International Statistical Institute, vol. 77(3), pages 378-394, December.
  • Handle: RePEc:bla:istatr:v:77:y:2009:i:3:p:378-394
    DOI: 10.1111/j.1751-5823.2009.00092.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2009.00092.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2009.00092.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nabendu Pal & Wooi Lim, 2004. "On intra-class correlation coefficient estimation," Statistical Papers, Springer, vol. 45(3), pages 369-392, July.
    2. Martin S. Ridout & Clarice G. B. Demétrio & David Firth, 1999. "Estimating Intraclass Correlation for Binary Data," Biometrics, The International Biometric Society, vol. 55(1), pages 137-148, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sukanya Intarapak & Thidaporn Supapakorn, 2019. "An Alternative Matrix Transformation To The F Test Statistic For Clustered Data," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 153-174, March.
    2. Michael P. Leung, 2023. "Design of Cluster-Randomized Trials with Cross-Cluster Interference," Papers 2310.18836, arXiv.org, revised Nov 2023.
    3. Sheng Wu & Weng Kee Wong & Catherine M. Crespi, 2017. "Maximin optimal designs for cluster randomized trials," Biometrics, The International Biometric Society, vol. 73(3), pages 916-926, September.
    4. Simon D French & Joanne E McKenzie & Denise A O'Connor & Jeremy M Grimshaw & Duncan Mortimer & Jill J Francis & Susan Michie & Neil Spike & Peter Schattner & Peter Kent & Rachelle Buchbinder & Matthew, 2013. "Evaluation of a Theory-Informed Implementation Intervention for the Management of Acute Low Back Pain in General Medical Practice: The IMPLEMENT Cluster Randomised Trial," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-15, June.
    5. Anneke Vang Hjort & Mirte A. G. Kuipers & Maria Stage & Charlotta Pisinger & Charlotte Demant Klinker, 2022. "Intervention Activities Associated with the Implementation of a Comprehensive School Tobacco Policy at Danish Vocational Schools: A Repeated Cross-Sectional Study," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    6. Intarapak Sukanya & Supapakorn Thidaporn, 2019. "An Alternative Matrix Transformation To The F Test Statistic For Clustered Data," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 153-169, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McMahon, James M. & Pouget, Enrique R. & Tortu, Stephanie, 2006. "A guide for multilevel modeling of dyadic data with binary outcomes using SAS PROC NLMIXED," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3663-3680, August.
    2. Yue, Chen & Chen, Shaojie & Sair, Haris I. & Airan, Raag & Caffo, Brian S., 2015. "Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 126-133.
    3. Tounkara Fodé & Rivest Louis-Paul, 2014. "Some New Random Effect Models for Correlated Binary Responses," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-15, December.
    4. Tsung-Shan Tsou & Wan-Chen Chen, 2013. "Estimation of intra-cluster correlation coefficient via the failure of Bartlett’s second identity," Computational Statistics, Springer, vol. 28(4), pages 1681-1698, August.
    5. Donald P. Green & Winston Lin & Claudia Gerber, 2018. "Optimal Allocation of Interviews to Baseline and Endline Surveys in Place-Based Randomized Trials and Quasi-Experiments," Evaluation Review, , vol. 42(4), pages 391-422, August.
    6. Janie McDonald & Patrick D. Gerard & Christopher S. McMahan & William R. Schucany, 2016. "Exact-Permutation-Based Sign Tests for Clustered Binary Data Via Weighted and Unweighted Test Statistics," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 698-712, December.
    7. Mulawa, Marta & Yamanis, Thespina J. & Hill, Lauren M. & Balvanz, Peter & Kajula, Lusajo J. & Maman, Suzanne, 2016. "Evidence of social network influence on multiple HIV risk behaviors and normative beliefs among young Tanzanian men," Social Science & Medicine, Elsevier, vol. 153(C), pages 35-43.
    8. Guangyong Zou & Allan Donner, 2004. "Confidence Interval Estimation of the Intraclass Correlation Coefficient for Binary Outcome Data," Biometrics, The International Biometric Society, vol. 60(3), pages 807-811, September.
    9. Zhen Pang & Anthony Y. C. Kuk, 2007. "Test of Marginal Compatibility and Smoothing Methods for Exchangeable Binary Data with Unequal Cluster Sizes," Biometrics, The International Biometric Society, vol. 63(1), pages 218-227, March.
    10. Pan Yi & Rose Charles E. & Haber Michael & Ma Yan & Carrasco Josep L. & Stewart Brock & Keitel Wendy A. & Keyserling Harry & Jacobson Robert M. & Poland Gregory & McNeil Michael M., 2013. "Assessing Agreement of Repeated Binary Measurements with an Application to the CDC’s Anthrax Vaccine Clinical Trial," The International Journal of Biostatistics, De Gruyter, vol. 9(1), pages 19-32, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:77:y:2009:i:3:p:378-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.