IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.16098.html
   My bibliography  Save this paper

Bounding the approach to oligarchy in a variant of the yard-sale model

Author

Listed:
  • David W. Cohen
  • Bruce M. Boghosian

Abstract

We present analytical results for the Gini coefficient of economic inequality under the dynamics of a modified Yard-Sale Model of kinetic asset exchange. A variant of the Yard-Sale Model is introduced by modifying the underlying binary transaction of the classical system. It is shown that the Gini coefficient is monotone under the resulting dynamics but the approach to oligarchy, as measured by the Gini index, can be bounded by a first-order differential inequality used in conjunction with the differential Gronwall inequality. This result is in the spirit of entropy -- entropy production inequalities for diffusive PDE. The asymptotics of the modified system, with a redistributive tax, are derived and shown to agree with the original, taxed Yard-Sale Model, which implies the modified system is as suitable for matching real wealth distributions. The Gini -- Gini production inequality is shown to hold for a broader class of models.

Suggested Citation

  • David W. Cohen & Bruce M. Boghosian, 2023. "Bounding the approach to oligarchy in a variant of the yard-sale model," Papers 2310.16098, arXiv.org, revised Apr 2024.
  • Handle: RePEc:arx:papers:2310.16098
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.16098
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bruce Boghosian, 2014. "Fokker–Planck description of wealth dynamics and the origin of Pareto's law," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(12), pages 1-8.
    2. Chorro, Christophe, 2016. "A simple probabilistic approach of the Yard-Sale model," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 35-40.
    3. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.
    4. Christophe Chorro, 2016. "A simple probabilistic approach of the Yard-Sale model," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01387028, HAL.
    5. Bruce M. Boghosian, 2014. "Fokker-Planck Description of Wealth Dynamics and the Origin of Pareto's Law," Papers 1407.6851, arXiv.org.
    6. Christophe Chorro, 2016. "A simple probabilistic approach of the Yard-Sale model," Post-Print hal-01387028, HAL.
    7. Christoph Borgers & Claude Greengard, 2023. "A new probabilistic analysis of the yard-sale model," Papers 2308.01485, arXiv.org.
    8. Bruce M. Boghosian & Merek Johnson & Jeremy Marcq, 2014. "An $H$ theorem for Boltzmann's equation for the Yard-Sale Model of asset exchange," Papers 1412.7227, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lima, Hugo & Vieira, Allan R. & Anteneodo, Celia, 2022. "Nonlinear redistribution of wealth from a stochastic approach," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    2. Christoph Borgers & Claude Greengard, 2023. "A new probabilistic analysis of the yard-sale model," Papers 2308.01485, arXiv.org.
    3. Christoph Borgers & Claude Greengard, 2024. "Local wealth condensation for yard-sale models with wealth-dependent biases," Papers 2406.10978, arXiv.org.
    4. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    5. Nicolas Bouleau & Christophe Chorro, 2017. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01138383, HAL.
    6. Nicolas Bouleau & Christophe Chorro, 2017. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process," Post-Print hal-01138383, HAL.
    7. Bouleau, Nicolas & Chorro, Christophe, 2017. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright–Fisher diffusion process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 379-395.
    8. Sam L. Polk & Bruce M. Boghosian, 2020. "The Nonuniversality of Wealth Distribution Tails Near Wealth Condensation Criticality," Papers 2006.15008, arXiv.org, revised Oct 2021.
    9. Li, Jie & Boghosian, Bruce M. & Li, Chengli, 2019. "The Affine Wealth Model: An agent-based model of asset exchange that allows for negative-wealth agents and its empirical validation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 423-442.
    10. Aktaev, Nurken E. & Bannova, K.A., 2022. "Mathematical modeling of probability distribution of money by means of potential formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    11. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    12. Chorro, Christophe, 2016. "A simple probabilistic approach of the Yard-Sale model," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 35-40.
    13. Danial Ludwig & Victor M. Yakovenko, 2021. "Physics-inspired analysis of the two-class income distribution in the USA in 1983-2018," Papers 2110.03140, arXiv.org, revised Jan 2022.
    14. Francisco Cardoso, Ben-Hur & Gonçalves, Sebastián & Iglesias, José Roberto, 2023. "Why equal opportunities lead to maximum inequality? The wealth condensation paradox generally solved," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. Zhong, Yue & Lai, Shaoyong & Hu, Chunhua, 2021. "Investigations to the dynamics of wealth distribution in a kinetic exchange model," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    16. Li, Jie & Boghosian, Bruce M., 2018. "Duality in an asset exchange model for wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 154-165.
    17. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.16098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.