IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2006.15008.html
   My bibliography  Save this paper

The Nonuniversality of Wealth Distribution Tails Near Wealth Condensation Criticality

Author

Listed:
  • Sam L. Polk
  • Bruce M. Boghosian

Abstract

In this work, we modify the affine wealth model of wealth distributions to examine the effects of nonconstant redistribution on the very wealthy. Previous studies of this model, restricted to flat redistribution schemes, have demonstrated the presence of a phase transition to a partially wealth-condensed state, or "partial oligarchy," at the critical value of an order parameter. These studies have also indicated the presence of an exponential tail in wealth distribution precisely at criticality. Away from criticality, the tail was observed to be Gaussian. In this work, we generalize the flat redistribution within the affine wealth model to allow for an essentially arbitrary redistribution policy. We show that the exponential tail observed near criticality in prior work is, in fact, a special case of a much broader class of critical, slower-than-Gaussian decays that depend sensitively on the corresponding asymptotic behavior of the progressive redistribution model used. We thereby demonstrate that the functional form of the tail of the wealth distribution in a near-critical society is not universal in nature but rather entirely determined by the specifics of public policy decisions. This is significant because most major economies today are observed to be near-critical.

Suggested Citation

  • Sam L. Polk & Bruce M. Boghosian, 2020. "The Nonuniversality of Wealth Distribution Tails Near Wealth Condensation Criticality," Papers 2006.15008, arXiv.org, revised Oct 2021.
  • Handle: RePEc:arx:papers:2006.15008
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2006.15008
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Drăgulescu, Adrian & Yakovenko, Victor M., 2001. "Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 213-221.
    2. Jean-Philippe Bouchaud & Marc Mezard, 2000. "Wealth condensation in a simple model of economy," Science & Finance (CFM) working paper archive 500026, Science & Finance, Capital Fund Management.
    3. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.
    4. S. Ispolatov & P.L. Krapivsky & S. Redner, 1998. "Wealth distributions in asset exchange models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 2(2), pages 267-276, March.
    5. Bruce Boghosian, 2014. "Fokker–Planck description of wealth dynamics and the origin of Pareto's law," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(12), pages 1-8.
    6. Bruce M. Boghosian, 2014. "Fokker-Planck Description of Wealth Dynamics and the Origin of Pareto's Law," Papers 1407.6851, arXiv.org.
    7. Bouchaud, Jean-Philippe & Mézard, Marc, 2000. "Wealth condensation in a simple model of economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(3), pages 536-545.
    8. Anirban Chakraborti, 2002. "Distributions Of Money In Model Markets Of Economy," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(10), pages 1315-1321.
    9. Li, Jie & Boghosian, Bruce M. & Li, Chengli, 2019. "The Affine Wealth Model: An agent-based model of asset exchange that allows for negative-wealth agents and its empirical validation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 423-442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    2. Lima, Hugo & Vieira, Allan R. & Anteneodo, Celia, 2022. "Nonlinear redistribution of wealth from a stochastic approach," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    2. Li, Jie & Boghosian, Bruce M. & Li, Chengli, 2019. "The Affine Wealth Model: An agent-based model of asset exchange that allows for negative-wealth agents and its empirical validation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 423-442.
    3. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.
    4. Chorro, Christophe, 2016. "A simple probabilistic approach of the Yard-Sale model," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 35-40.
    5. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    6. Bagatella-Flores, N. & Rodríguez-Achach, M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2015. "Wealth distribution of simple exchange models coupled with extremal dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 168-175.
    7. N. Bagatella-Flores & M. Rodriguez-Achach & H. F. Coronel-Brizio & A. R. Hernandez-Montoya, 2014. "Wealth distribution of simple exchange models coupled with extremal dynamics," Papers 1407.7153, arXiv.org.
    8. Li, Jie & Boghosian, Bruce M., 2018. "Duality in an asset exchange model for wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 154-165.
    9. Smerlak, Matteo, 2016. "Thermodynamics of inequalities: From precariousness to economic stratification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 40-50.
    10. Braun, Dieter, 2006. "Nonequilibrium thermodynamics of wealth condensation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 714-722.
    11. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    12. Nicolas Bouleau & Christophe Chorro, 2017. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01138383, HAL.
    13. Nicolas Bouleau & Christophe Chorro, 2017. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process," Post-Print hal-01138383, HAL.
    14. Lima, Hugo & Vieira, Allan R. & Anteneodo, Celia, 2022. "Nonlinear redistribution of wealth from a stochastic approach," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    15. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    16. Bouleau, Nicolas & Chorro, Christophe, 2017. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright–Fisher diffusion process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 379-395.
    17. Christoph Borgers & Claude Greengard, 2023. "A new probabilistic analysis of the yard-sale model," Papers 2308.01485, arXiv.org.
    18. Christophe Chorro, 2015. "A Simple Probabilistic Approach of the Yard-Sale Model," Documents de travail du Centre d'Economie de la Sorbonne 15062, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Carmen Pellicer-Lostao & Ricardo Lopez-Ruiz, 2010. "Transition from Exponential to Power Law Distributions in a Chaotic Market," Papers 1011.5187, arXiv.org.
    20. Nicolas Bouleau & Christophe Chorro, 2015. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process," Documents de travail du Centre d'Economie de la Sorbonne 15024r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jul 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.15008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.