IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.12333.html
   My bibliography  Save this paper

Black-Litterman Asset Allocation under Hidden Truncation Distribution

Author

Listed:
  • Jungjun Park
  • Andrew L. Nguyen

Abstract

In this paper, we study the Black-Litterman (BL) asset allocation model (Black and Litterman, 1990) under the hidden truncation skew-normal distribution (Arnold and Beaver, 2000). In particular, when returns are assumed to follow this skew normal distribution, we show that the posterior returns, after incorporating views, are also skew normal. By using Simaan three moments risk model (Simaan, 1993), we could then obtain the optimal portfolio. Empirical data show that the optimal portfolio obtained this way has less risk compared to an optimal portfolio of the classical BL model and that they become more negatively skewed as the expected returns of portfolios increase, which suggests that the investors trade a negative skewness for a higher expected return. We also observe a negative relation between portfolio volatility and portfolio skewness. This observation suggests that investors may be making a trade-off, opting for lower volatility in exchange for higher skewness, or vice versa. This trade-off indicates that stocks with significant price declines tend to exhibit increased volatility.

Suggested Citation

  • Jungjun Park & Andrew L. Nguyen, 2023. "Black-Litterman Asset Allocation under Hidden Truncation Distribution," Papers 2310.12333, arXiv.org.
  • Handle: RePEc:arx:papers:2310.12333
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.12333
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carmichael, Benoıˆt & Coën, Alain, 2013. "Asset pricing with skewed-normal return," Finance Research Letters, Elsevier, vol. 10(2), pages 50-57.
    2. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    3. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    2. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    3. Barrieu, Pauline & Scandolo, Giacomo, 2014. "Assessing financial model risk," LSE Research Online Documents on Economics 60084, London School of Economics and Political Science, LSE Library.
    4. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    5. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    6. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.
    7. Giovanni Paolo Crespi & Elisa Mastrogiacomo, 2020. "Qualitative robustness of set-valued value-at-risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 25-54, February.
    8. Mai Jan-Frederik & Schenk Steffen & Scherer Matthias, 2015. "Analyzing model robustness via a distortion of the stochastic root: A Dirichlet prior approach," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 177-195, December.
    9. Pitera, Marcin & Schmidt, Thorsten, 2018. "Unbiased estimation of risk," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 133-145.
    10. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Papers 2306.14506, arXiv.org.
    11. Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
    12. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    13. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    14. Jan Obloj & Johannes Wiesel, 2018. "Robust estimation of superhedging prices," Papers 1807.04211, arXiv.org, revised Apr 2020.
    15. Onur Babat & Juan C. Vera & Luis F. Zuluaga, 2021. "Computing near-optimal Value-at-Risk portfolios using Integer Programming techniques," Papers 2107.07339, arXiv.org.
    16. Xue Dong He & Xianhua Peng, 2017. "Surplus-Invariant, Law-Invariant, and Conic Acceptance Sets Must be the Sets Induced by Value-at-Risk," Papers 1707.05596, arXiv.org, revised Jan 2018.
    17. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    18. Fazlollah Soleymani & Mahdi Vasighi, 2022. "Efficient portfolio construction by means of CVaR and k‐means++ clustering analysis: Evidence from the NYSE," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3679-3693, July.
    19. Hans Rau-Bredow, 2019. "Bigger Is Not Always Safer: A Critical Analysis of the Subadditivity Assumption for Coherent Risk Measures," Risks, MDPI, vol. 7(3), pages 1-18, August.
    20. Barrieu, Pauline & Scandolo, Giacomo, 2015. "Assessing financial model risk," European Journal of Operational Research, Elsevier, vol. 242(2), pages 546-556.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.12333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.