JAX-LOB: A GPU-Accelerated limit order book simulator to unlock large scale reinforcement learning for trading
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Peter Belcak & Jan-Peter Calliess & Stefan Zohren, 2020. "Fast Agent-Based Simulation Framework with Applications to Reinforcement Learning and the Study of Trading Latency Effects," Papers 2008.07871, arXiv.org, revised Sep 2022.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Koen Ponse & Aske Plaat & Niki van Stein & Thomas M. Moerland, 2024. "EconoJax: A Fast & Scalable Economic Simulation in Jax," Papers 2410.22165, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhenglong Li & Vincent Tam & Kwan L. Yeung, 2024. "Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management," Papers 2402.00515, arXiv.org, revised Sep 2024.
- Zijian Shi & John Cartlidge, 2021. "The Limit Order Book Recreation Model (LOBRM): An Extended Analysis," Papers 2107.00534, arXiv.org.
- Samuel N. Cohen & Derek Snow & Lukasz Szpruch, 2021. "Black-box model risk in finance," Papers 2102.04757, arXiv.org.
- Zihao Zhang & Bryan Lim & Stefan Zohren, 2021. "Deep Learning for Market by Order Data," Papers 2102.08811, arXiv.org, revised Jul 2021.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2023-09-25 (Computational Economics)
- NEP-MST-2023-09-25 (Market Microstructure)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.13289. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.