IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.02987.html
   My bibliography  Save this paper

Frequency Regulation with Storage: On Losses and Profits

Author

Listed:
  • Dirk Lauinger
  • Franc{c}ois Vuille
  • Daniel Kuhn

Abstract

Low-carbon societies will need to store vast amounts of electricity to balance intermittent generation from wind and solar energy, for example, through frequency regulation. Here, we derive an analytical solution to the decision-making problem of storage operators who sell frequency regulation power to grid operators and trade electricity on day-ahead markets. Mathematically, we treat future frequency deviation trajectories as functional uncertainties in a receding horizon robust optimization problem. We constrain the expected terminal state-of-charge to be equal to some target to allow storage operators to make good decisions not only for the present but also the future. Thanks to this constraint, the amount of electricity traded on day-ahead markets is an implicit function of the regulation power sold to grid operators. The implicit function quantifies the amount of power that needs to be purchased to cover the expected energy loss that results from providing frequency regulation. We show how the marginal cost associated with the expected energy loss decreases with roundtrip efficiency and increases with frequency deviation dispersion. We find that the profits from frequency regulation over the lifetime of energy-constrained storage devices are roughly inversely proportional to the length of time for which regulation power must be committed.

Suggested Citation

  • Dirk Lauinger & Franc{c}ois Vuille & Daniel Kuhn, 2023. "Frequency Regulation with Storage: On Losses and Profits," Papers 2306.02987, arXiv.org, revised Mar 2024.
  • Handle: RePEc:arx:papers:2306.02987
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.02987
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Apostolaki-Iosifidou, Elpiniki & Codani, Paul & Kempton, Willett, 2017. "Measurement of power loss during electric vehicle charging and discharging," Energy, Elsevier, vol. 127(C), pages 730-742.
    2. Yu Hu & Miguel Armada & Maria Jesus Sanchez, 2021. "Potential utilization of Battery Energy Storage Systems (BESS) in the major European electricity markets," Papers 2112.09816, arXiv.org, revised Jun 2022.
    3. Bjørndal, Endre & Bjørndal, Mette Helene & Coniglio, Stefano & Körner, Marc-Fabian & Leinauer, Christina & Weibelzahl, Martin, 2023. "Energy storage operation and electricity market design: On the market power of monopolistic storage operators," European Journal of Operational Research, Elsevier, vol. 307(2), pages 887-909.
    4. Kraft, Emil & Russo, Marianna & Keles, Dogan & Bertsch, Valentin, 2023. "Stochastic optimization of trading strategies in sequential electricity markets," European Journal of Operational Research, Elsevier, vol. 308(1), pages 400-421.
    5. Virasjoki, Vilma & Siddiqui, Afzal S. & Oliveira, Fabricio & Salo, Ahti, 2020. "Utility-scale energy storage in an imperfectly competitive power sector," Energy Economics, Elsevier, vol. 88(C).
    6. Hu, Yu & Armada, Miguel & Jesús Sánchez, María, 2022. "Potential utilization of battery energy storage systems (BESS) in the major European electricity markets," Applied Energy, Elsevier, vol. 322(C).
    7. Uddin, Kotub & Dubarry, Matthieu & Glick, Mark B., 2018. "The viability of vehicle-to-grid operations from a battery technology and policy perspective," Energy Policy, Elsevier, vol. 113(C), pages 342-347.
    8. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    9. Stephen Comello & Stefan Reichelstein, 2019. "The emergence of cost effective battery storage," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    3. Samuel O. Ezennaya & Julia Kowal, 2024. "Optimizing Energy Arbitrage: Benchmark Models for LFP Battery Dynamic Activation Costs in Reactive Balancing Market," Sustainability, MDPI, vol. 16(9), pages 1-31, April.
    4. Pablo Carrasco Ortega & Pablo Durán Gómez & Julio César Mérida Sánchez & Fernando Echevarría Camarero & Ángel Á. Pardiñas, 2023. "Battery Energy Storage Systems for the New Electricity Market Landscape: Modeling, State Diagnostics, Management, and Viability—A Review," Energies, MDPI, vol. 16(17), pages 1-51, August.
    5. Englberger, Stefan & Abo Gamra, Kareem & Tepe, Benedikt & Schreiber, Michael & Jossen, Andreas & Hesse, Holger, 2021. "Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context," Applied Energy, Elsevier, vol. 304(C).
    6. Topalović, Zejneba & Haas, Reinhard & Sayer, Marlene, 2024. "Economic benefits of PHS and Li-ion storage. Study cases: Austria and Bosnia and Herzegovina," Applied Energy, Elsevier, vol. 362(C).
    7. Sai, Wei & Pan, Zehua & Liu, Siyu & Jiao, Zhenjun & Zhong, Zheng & Miao, Bin & Chan, Siew Hwa, 2023. "Event-driven forecasting of wholesale electricity price and frequency regulation price using machine learning algorithms," Applied Energy, Elsevier, vol. 352(C).
    8. Li, Junhui & Zhang, Jingxiang & Mu, Gang & Li, Cuiping & Yan, Gangui & Zhu, Xingxu & Jia, Chen, 2024. "Dynamic partitioning method for independent energy storage zones participating in peak modulation and frequency modulation under the auxiliary service market," Applied Energy, Elsevier, vol. 361(C).
    9. Ma, Qianli & Wei, Wei & Mei, Shengwei, 2024. "Health-aware coordinate long-term and short-term operation for BESS in energy and frequency regulation markets," Applied Energy, Elsevier, vol. 356(C).
    10. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    11. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    12. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    13. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    14. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    15. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    16. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    17. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    18. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    19. Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
    20. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.02987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.