IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.15364.html
   My bibliography  Save this paper

LQG Risk-Sensitive Single-Agent and Major-Minor Mean Field Game Systems: A Variational Framework

Author

Listed:
  • Hanchao Liu
  • Dena Firoozi
  • Mich`ele Breton

Abstract

We develop a variational approach to address risk-sensitive optimal control problems with an exponential-of-integral cost functional in a general linear-quadratic-Gaussian (LQG) single-agent setup, offering new insights into such problems. Our analysis leads to the derivation of a nonlinear necessary and sufficient condition of optimality, expressed in terms of martingale processes. Subject to specific conditions, we find an equivalent risk-neutral measure, under which a linear state feedback form can be obtained for the optimal control. It is then shown that the obtained feedback control is consistent with the imposed condition and remains optimal under the original measure. Building upon this development, we (i) propose a variational framework for general LQG risk-sensitive mean-field games (MFGs) and (ii) advance the LQG risk-sensitive MFG theory by incorporating a major agent in the framework. The major agent interacts with a large number of minor agents, and unlike the minor agents, its influence on the system remains significant even with an increasing number of minor agents. We derive the Markovian closed-loop best-response strategies of agents in the limiting case where the number of agents goes to infinity. We establish that the set of obtained best-response strategies yields a Nash equilibrium in the limiting case and an $\varepsilon$-Nash equilibrium in the finite-player case. We conclude the paper by presenting illustrative numerical experiments.

Suggested Citation

  • Hanchao Liu & Dena Firoozi & Mich`ele Breton, 2023. "LQG Risk-Sensitive Single-Agent and Major-Minor Mean Field Game Systems: A Variational Framework," Papers 2305.15364, arXiv.org, revised Aug 2023.
  • Handle: RePEc:arx:papers:2305.15364
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.15364
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bielecki, Tomasz R. & Pliska, Stanley R. & Sherris, Michael, 2000. "Risk sensitive asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1145-1177, July.
    2. Rene Carmona & Jean-Pierre Fouque & Li-Hsien Sun, 2013. "Mean Field Games and Systemic Risk," Papers 1308.2172, arXiv.org.
    3. Xuancheng Huang & Sebastian Jaimungal & Mojtaba Nourian, 2019. "Mean-Field Game Strategies for Optimal Execution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(2), pages 153-185, March.
    4. Tomasz R. Bielecki & Stanley R. Pliska, 2003. "Economic Properties of the Risk Sensitive Criterion for Portfolio Management," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 2(2), pages 3-17, February.
    5. Charles-Albert Lehalle & Charafeddine Mouzouni, 2019. "A mean field game of portfolio trading and its consequences on perceived correlations," Working Papers hal-02003143, HAL.
    6. W. H. Fleming & S. J. Sheu, 2000. "Risk‐Sensitive Control and an Optimal Investment Model," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 197-213, April.
    7. Jun Moon & Tamer Başar, 2019. "Risk-Sensitive Mean Field Games via the Stochastic Maximum Principle," Dynamic Games and Applications, Springer, vol. 9(4), pages 1100-1125, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    2. Arvind Shrivats & Dena Firoozi & Sebastian Jaimungal, 2020. "A Mean-Field Game Approach to Equilibrium Pricing in Solar Renewable Energy Certificate Markets," Papers 2003.04938, arXiv.org, revised Aug 2021.
    3. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    4. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    5. Steven Campbell & Yichao Chen & Arvind Shrivats & Sebastian Jaimungal, 2021. "Deep Learning for Principal-Agent Mean Field Games," Papers 2110.01127, arXiv.org.
    6. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2021. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Dynamic Games and Applications, Springer, vol. 11(3), pages 463-490, September.
    7. Tadashi Hayashi & Jun Sekine, 2011. "Risk-sensitive Portfolio Optimization with Two-factor Having a Memory Effect," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(4), pages 385-403, November.
    8. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    9. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," CARF F-Series CARF-F-509, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    10. Lacker, Daniel, 2015. "Mean field games via controlled martingale problems: Existence of Markovian equilibria," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2856-2894.
    11. Vladimir Cherny & Jan Obloj, 2013. "Optimal portfolios of a long-term investor with floor or drawdown constraints," Papers 1305.6831, arXiv.org.
    12. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    13. Huyên Pham, 2003. "A large deviations approach to optimal long term investment," Finance and Stochastics, Springer, vol. 7(2), pages 169-195.
    14. Akihiko Inoue & Yumiharu Nakano, 2005. "Optimal long term investment model with memory," Papers math/0506621, arXiv.org, revised May 2006.
    15. Masaaki Fujii & Akihiko Takahashi, 2022. "Equilibrium Price Formation with a Major Player and its Mean Field Limit (Forthcoming in ESAIM: Control, Optimization and Calculus of Variations)(Revised version of CARF-F-509)," CARF F-Series CARF-F-533, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    16. Traian A. Pirvu & Gordan Zitkovic, 2007. "Maximizing the Growth Rate under Risk Constraints," Papers 0706.0480, arXiv.org.
    17. Thomas Knispel, 2012. "Asymptotics of robust utility maximization," Papers 1203.1191, arXiv.org.
    18. Arvind V. Shrivats & Dena Firoozi & Sebastian Jaimungal, 2022. "A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 779-824, July.
    19. Aditya Maheshwari & Andrey Sarantsev, 2017. "Modeling Financial System with Interbank Flows, Borrowing, and Investing," Papers 1707.03542, arXiv.org, revised Oct 2018.
    20. Lijuan Xu & Abbas Ali Chandio & Jingyi Wang & Yuansheng Jiang, 2022. "Does Farmland Tenancy Improve Household Asset Allocation? Evidence from Rural China," Land, MDPI, vol. 12(1), pages 1-22, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.15364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.