IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.01127.html
   My bibliography  Save this paper

Deep Learning for Principal-Agent Mean Field Games

Author

Listed:
  • Steven Campbell
  • Yichao Chen
  • Arvind Shrivats
  • Sebastian Jaimungal

Abstract

Here, we develop a deep learning algorithm for solving Principal-Agent (PA) mean field games with market-clearing conditions -- a class of problems that have thus far not been studied and one that poses difficulties for standard numerical methods. We use an actor-critic approach to optimization, where the agents form a Nash equilibria according to the principal's penalty function, and the principal evaluates the resulting equilibria. The inner problem's Nash equilibria is obtained using a variant of the deep backward stochastic differential equation (BSDE) method modified for McKean-Vlasov forward-backward SDEs that includes dependence on the distribution over both the forward and backward processes. The outer problem's loss is further approximated by a neural net by sampling over the space of penalty functions. We apply our approach to a stylized PA problem arising in Renewable Energy Certificate (REC) markets, where agents may rent clean energy production capacity, trade RECs, and expand their long-term capacity to navigate the market at maximum profit. Our numerical results illustrate the efficacy of the algorithm and lead to interesting insights into the nature of optimal PA interactions in the mean-field limit of these markets.

Suggested Citation

  • Steven Campbell & Yichao Chen & Arvind Shrivats & Sebastian Jaimungal, 2021. "Deep Learning for Principal-Agent Mean Field Games," Papers 2110.01127, arXiv.org.
  • Handle: RePEc:arx:papers:2110.01127
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.01127
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Masaaki Fujii & Akihiko Takahashi, 2020. "A Mean Field Game Approach to Equilibrium Pricing with Market Clearing Condition," CARF F-Series CARF-F-473, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. Masaaki Fujii & Akihiko Takahashi, 2020. "A Mean Field Game Approach to Equilibrium Pricing with Market Clearing Condition," CIRJE F-Series CIRJE-F-1144, CIRJE, Faculty of Economics, University of Tokyo.
    3. Coulon, Michael & Khazaei, Javad & Powell, Warren B., 2015. "SMART-SREC: A stochastic model of the New Jersey solar renewable energy certificate market," Journal of Environmental Economics and Management, Elsevier, vol. 73(C), pages 13-31.
    4. Seifert, Jan & Uhrig-Homburg, Marliese & Wagner, Michael, 2008. "Dynamic behavior of CO2 spot prices," Journal of Environmental Economics and Management, Elsevier, vol. 56(2), pages 180-194, September.
    5. Javad Khazaei & Michael Coulon & Warren B. Powell, 2017. "ADAPT: A Price-Stabilizing Compliance Policy for Renewable Energy Certificates: The Case of SREC Markets," Operations Research, INFORMS, vol. 65(6), pages 1429-1445, December.
    6. Holmstrom, Bengt & Milgrom, Paul, 1987. "Aggregation and Linearity in the Provision of Intertemporal Incentives," Econometrica, Econometric Society, vol. 55(2), pages 303-328, March.
    7. Michael Ludkovski & Xuwei Yang, 2017. "Mean Field Game Approach to Production and Exploration of Exhaustible Commodities," Papers 1710.05131, arXiv.org.
    8. Arvind Shrivats & Sebastian Jaimungal, 2020. "Optimal Generation and Trading in Solar Renewable Energy Certificate (SREC) Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(1-2), pages 99-131, July.
    9. Charles-Albert Lehalle & Charafeddine Mouzouni, 2019. "A mean field game of portfolio trading and its consequences on perceived correlations," Working Papers hal-02003143, HAL.
    10. Jakša Cvitanić & Dylan Possamaï & Nizar Touzi, 2017. "Moral Hazard in Dynamic Risk Management," Management Science, INFORMS, vol. 63(10), pages 3328-3346, October.
    11. Jiequn Han & Ruimeng Hu, 2019. "Deep Fictitious Play for Finding Markovian Nash Equilibrium in Multi-Agent Games," Papers 1912.01809, arXiv.org, revised Jun 2020.
    12. Ren'e Aid & Matteo Basei & Huy^en Pham, 2017. "A McKean-Vlasov approach to distributed electricity generation development," Papers 1705.01302, arXiv.org, revised Nov 2019.
    13. Arvind Shrivats & Sebastian Jaimungal, 2019. "Optimal Behaviour in Solar Renewable Energy Certificate (SREC) Markets," Papers 1904.06337, arXiv.org, revised Apr 2020.
    14. repec:dau:papers:123456789/2267 is not listed on IDEAS
    15. Romuald Elie & Thibaut Mastrolia & Dylan Possamaï, 2019. "A Tale of a Principal and Many, Many Agents," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 440-467, May.
    16. Yuliy Sannikov, 2008. "A Continuous-Time Version of the Principal-Agent Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(3), pages 957-984.
    17. Xuancheng Huang & Sebastian Jaimungal & Mojtaba Nourian, 2019. "Mean-Field Game Strategies for Optimal Execution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(2), pages 153-185, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anthony Coache & Sebastian Jaimungal, 2021. "Reinforcement Learning with Dynamic Convex Risk Measures," Papers 2112.13414, arXiv.org, revised Nov 2022.
    2. Qirui Mi & Zhiyu Zhao & Siyu Xia & Yan Song & Jun Wang & Haifeng Zhang, 2024. "Learning Macroeconomic Policies based on Microfoundations: A Stackelberg Mean Field Game Approach," Papers 2403.12093, arXiv.org, revised Oct 2024.
    3. Dena Firoozi & Arvind V Shrivats & Sebastian Jaimungal, 2021. "Principal agent mean field games in REC markets," Papers 2112.11963, arXiv.org, revised Jun 2022.
    4. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    5. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dena Firoozi & Arvind V Shrivats & Sebastian Jaimungal, 2021. "Principal agent mean field games in REC markets," Papers 2112.11963, arXiv.org, revised Jun 2022.
    2. Arvind V. Shrivats & Dena Firoozi & Sebastian Jaimungal, 2022. "A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 779-824, July.
    3. Arvind Shrivats & Dena Firoozi & Sebastian Jaimungal, 2020. "A Mean-Field Game Approach to Equilibrium Pricing in Solar Renewable Energy Certificate Markets," Papers 2003.04938, arXiv.org, revised Aug 2021.
    4. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," CARF F-Series CARF-F-509, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    5. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    6. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," Papers 2102.10756, arXiv.org, revised Feb 2022.
    7. Olivier F'eron & Peter Tankov & Laura Tinsi, 2020. "Price formation and optimal trading in intraday electricity markets with a major player," Papers 2011.07655, arXiv.org.
    8. Olivier Féron & Peter Tankov & Laura Tinsi, 2020. "Price Formation and Optimal Trading in Intraday Electricity Markets with a Major Player," Risks, MDPI, vol. 8(4), pages 1-21, December.
    9. Camilo Hern'andez & Dylan Possamai, 2023. "Time-inconsistent contract theory," Papers 2303.01601, arXiv.org.
    10. Masaaki Fujii & Akihiko Takahashi, 2021. "``Equilibrium Price Formation with a Major Player and its Mean Field Limit''," CIRJE F-Series CIRJE-F-1162, CIRJE, Faculty of Economics, University of Tokyo.
    11. Emma Hubert & Thibaut Mastrolia & Dylan Possamai & Xavier Warin, 2020. "Incentives, lockdown, and testing: from Thucydides's analysis to the COVID-19 pandemic," Papers 2009.00484, arXiv.org, revised Apr 2022.
    12. Daniel Krv{s}ek & Dylan Possamai, 2023. "Randomisation with moral hazard: a path to existence of optimal contracts," Papers 2311.13278, arXiv.org.
    13. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    14. Masaaki Fujii & Akihiko Takahashi, 2022. "Equilibrium Price Formation with a Major Player and its Mean Field Limit (Forthcoming in ESAIM: Control, Optimization and Calculus of Variations)(Revised version of CARF-F-509)," CARF F-Series CARF-F-533, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Masaaki Fujii & Akihiko Takahashi, 2021. "A Mean Field Game Approach to Equilibrium Pricing with Market Clearing Condition," CIRJE F-Series CIRJE-F-1177, CIRJE, Faculty of Economics, University of Tokyo.
    16. Zhao, Chuandang & Xu, Jiuping & Wang, Fengjuan & Xie, Guo & Tan, Cheng, 2024. "Economic–environmental trade-offs based support policy towards optimal planning of wastewater heat recovery," Applied Energy, Elsevier, vol. 364(C).
    17. Masaaki Fujii & Akihiko Takahashi, 2021. "A Mean Field Game Approach to Equilibrium Pricing with Market Clearing Condition," CARF F-Series CARF-F-521, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    18. Guillermo Alonso Alvarez & Erhan Bayraktar & Ibrahim Ekren & Liwei Huang, 2024. "Sequential optimal contracting in continuous time," Papers 2411.04262, arXiv.org.
    19. Emma Hubert, 2023. "Continuous-time incentives in hierarchies," Finance and Stochastics, Springer, vol. 27(3), pages 605-661, July.
    20. René Carmona & Gökçe Dayanıklı & Mathieu Laurière, 2022. "Mean Field Models to Regulate Carbon Emissions in Electricity Production," Dynamic Games and Applications, Springer, vol. 12(3), pages 897-928, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.01127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.