IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.13598.html
   My bibliography  Save this paper

Bootstrap-Assisted Inference for Generalized Grenander-type Estimators

Author

Listed:
  • Matias D. Cattaneo
  • Michael Jansson
  • Kenichi Nagasawa

Abstract

Westling and Carone (2020) proposed a framework for studying the large sample distributional properties of generalized Grenander-type estimators, a versatile class of nonparametric estimators of monotone functions. The limiting distribution of those estimators is representable as the left derivative of the greatest convex minorant of a Gaussian process whose monomial mean can be of unknown order (when the degree of flatness of the function of interest is unknown). The standard nonparametric bootstrap is unable to consistently approximate the large sample distribution of the generalized Grenander-type estimators even if the monomial order of the mean is known, making statistical inference a challenging endeavour in applications. To address this inferential problem, we present a bootstrap-assisted inference procedure for generalized Grenander-type estimators. The procedure relies on a carefully crafted, yet automatic, transformation of the estimator. Moreover, our proposed method can be made ``flatness robust'' in the sense that it can be made adaptive to the (possibly unknown) degree of flatness of the function of interest. The method requires only the consistent estimation of a single scalar quantity, for which we propose an automatic procedure based on numerical derivative estimation and the generalized jackknife. Under random sampling, our inference method can be implemented using a computationally attractive exchangeable bootstrap procedure. We illustrate our methods with examples and we also provide a small simulation study. The development of formal results is made possible by some technical results that may be of independent interest.

Suggested Citation

  • Matias D. Cattaneo & Michael Jansson & Kenichi Nagasawa, 2023. "Bootstrap-Assisted Inference for Generalized Grenander-type Estimators," Papers 2303.13598, arXiv.org, revised Jul 2024.
  • Handle: RePEc:arx:papers:2303.13598
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.13598
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van der Vaart Aad & van der Laan Mark J., 2006. "Estimating a Survival Distribution with Current Status Data and High-dimensional Covariates," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-42, October.
    2. Ted Westling & Peter Gilbert & Marco Carone, 2020. "Causal isotonic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 719-747, July.
    3. Gregory Cox, 2022. "A Generalized Argmax Theorem with Applications," Papers 2209.08793, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ao Yuan & Anqi Yin & Ming T. Tan, 2021. "Enhanced Doubly Robust Procedure for Causal Inference," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 454-478, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.13598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.