IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.06778.html
   My bibliography  Save this paper

Analysis of optimal portfolio on finite and small-time horizons for a stochastic volatility model with multiple correlated assets

Author

Listed:
  • Minglian Lin
  • Indranil SenGupta

Abstract

In this paper, we consider the portfolio optimization problem in a financial market where the underlying stochastic volatility model is driven by n-dimensional Brownian motions. At first, we derive a Hamilton-Jacobi-Bellman equation including the correlations among the standard Brownian motions. We use an approximation method for the optimization of portfolios. With such approximation, the value function is analyzed using the first-order terms of expansion of the utility function in the powers of time to the horizon. The error of this approximation is controlled using the second-order terms of expansion of the utility function. It is also shown that the one-dimensional version of this analysis corresponds to a known result in the literature. We also generate a close-to-optimal portfolio near the time to horizon using the first-order approximation of the utility function. It is shown that the error is controlled by the square of the time to the horizon. Finally, we provide an approximation scheme to the value function for all times and generate a close-to-optimal portfolio.

Suggested Citation

  • Minglian Lin & Indranil SenGupta, 2023. "Analysis of optimal portfolio on finite and small-time horizons for a stochastic volatility model with multiple correlated assets," Papers 2302.06778, arXiv.org, revised Dec 2023.
  • Handle: RePEc:arx:papers:2302.06778
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.06778
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuoqing Deng & Xun Li & Huyên Pham & Xiang Yu, 2022. "Optimal consumption with reference to past spending maximum," Finance and Stochastics, Springer, vol. 26(2), pages 217-266, April.
    2. Rohini Kumar & Hussein Nasralah, 2016. "Asymptotic approximation of optimal portfolio for small time horizons," Papers 1611.09300, arXiv.org, revised Feb 2018.
    3. Shuoqing Deng & Xun Li & Huyên Pham & Xiang Yu, 2022. "Optimal consumption with reference to past spending maximum," Post-Print hal-03947571, HAL.
    4. Yuri Kabanov & Claudia Klüppelberg, 2004. "A geometric approach to portfolio optimization in models with transaction costs," Finance and Stochastics, Springer, vol. 8(2), pages 207-227, May.
    5. Kumar Muthuraman & Sunil Kumar, 2006. "Multidimensional Portfolio Optimization With Proportional Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 301-335, April.
    6. Alla Petukhina & Erin Sprünken, 2021. "Evaluation of multi-asset investment strategies with digital assets," Digital Finance, Springer, vol. 3(1), pages 45-79, March.
    7. Michael Roberts & Indranil SenGupta, 2020. "Infinitesimal generators for two-dimensional Lévy process-driven hypothesis testing," Annals of Finance, Springer, vol. 16(1), pages 121-139, March.
    8. Michael Roberts & Indranil SenGupta, 2020. "Sequential Hypothesis Testing in Machine Learning, and Crude Oil Price Jump Size Detection," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(5), pages 374-395, September.
    9. Minglian Lin & Indranil SenGupta, 2021. "Analysis of optimal portfolio on finite and small time horizons for a stochastic volatility market model," Papers 2104.06293, arXiv.org.
    10. Michael Roberts & Indranil SenGupta, 2020. "Sequential hypothesis testing in machine learning, and crude oil price jump size detection," Papers 2004.08889, arXiv.org, revised Dec 2020.
    11. Shuoqing Deng & Xun Li & Huyen Pham & Xiang Yu, 2020. "Optimal Consumption with Reference to Past Spending Maximum," Papers 2006.07223, arXiv.org, revised Mar 2022.
    12. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Papers 2105.02325, arXiv.org.
    13. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    14. Paolo Guasoni & Yuliya Mishura & Miklós Rásonyi, 2021. "High-frequency trading with fractional Brownian motion," Finance and Stochastics, Springer, vol. 25(2), pages 277-310, April.
    15. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Annals of Finance, Springer, vol. 17(4), pages 529-558, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianfei Hui & Baiqing Sun & Indranil SenGupta & Yan Zhou & Hui Jiang, 2022. "Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning," Papers 2204.02891, arXiv.org, revised Jan 2023.
    2. Minglian Lin & Indranil SenGupta, 2021. "Analysis of optimal portfolio on finite and small time horizons for a stochastic volatility market model," Papers 2104.06293, arXiv.org.
    3. Li, Xun & Yu, Xiang & Zhang, Qinyi, 2023. "Optimal consumption and life insurance under shortfall aversion and a drawdown constraint," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 25-45.
    4. Lijun Bo & Yijie Huang & Xiang Yu, 2023. "An extended Merton problem with relaxed benchmark tracking," Papers 2304.10802, arXiv.org, revised Jul 2024.
    5. Zongxia Liang & Xiaodong Luo & Fengyi Yuan, 2023. "Consumption-investment decisions with endogenous reference point and drawdown constraint," Mathematics and Financial Economics, Springer, volume 17, number 6, March.
    6. Chonghu Guan & Zuo Quan Xu, 2023. "Optimal ratcheting of dividend payout under Brownian motion surplus," Papers 2308.15048, arXiv.org, revised Jul 2024.
    7. Shubham Ekapure & Nuruddin Jiruwala & Sohan Patnaik & Indranil SenGupta, 2021. "A data-science-driven short-term analysis of Amazon, Apple, Google, and Microsoft stocks," Papers 2107.14695, arXiv.org.
    8. Arkadiy V. Sakhartov, 2017. "Economies of Scope, Resource Relatedness, and the Dynamics of Corporate Diversification," Strategic Management Journal, Wiley Blackwell, vol. 38(11), pages 2168-2188, November.
    9. Jin Hyuk Choi & Tae Ung Gang, 2021. "Optimal investment in illiquid market with search frictions and transaction costs," Papers 2101.09936, arXiv.org, revised Aug 2021.
    10. Soren Christensen & Marc Wittlinger, 2012. "Optimal relaxed portfolio strategies for growth rate maximization problems with transaction costs," Papers 1209.0305, arXiv.org, revised Jun 2013.
    11. Irle, Albrecht & Prelle, Claas, 2008. "A renewal theoretic result in portfolio theory under transaction costs with multiple risky assets," Kiel Working Papers 1449, Kiel Institute for the World Economy (IfW Kiel).
    12. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    13. Chonghu Guan & Jiacheng Fan & Zuo Quan Xu, 2023. "Optimal dividend payout with path-dependent drawdown constraint," Papers 2312.01668, arXiv.org.
    14. Xianfei Hui & Baiqing Sun & Hui Jiang & Indranil SenGupta, 2021. "Analysis of stock index with a generalized BN-S model: an approach based on machine learning and fuzzy parameters," Papers 2101.08984, arXiv.org, revised Feb 2022.
    15. Peter Schober & Julian Valentin & Dirk Pflüger, 2022. "Solving High-Dimensional Dynamic Portfolio Choice Models with Hierarchical B-Splines on Sparse Grids," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 185-224, January.
    16. Bahman Angoshtari & Erhan Bayraktar & Virginia R. Young, 2021. "Optimal Investment and Consumption under a Habit-Formation Constraint," Papers 2102.03414, arXiv.org, revised Nov 2021.
    17. Albert Altarovici & Max Reppen & H. Mete Soner, 2016. "Optimal Consumption and Investment with Fixed and Proportional Transaction Costs," Papers 1610.03958, arXiv.org.
    18. Najafi, Amir Abbas & Pourahmadi, Zahra, 2016. "An efficient heuristic method for dynamic portfolio selection problem under transaction costs and uncertain conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 154-162.
    19. David Hobson & Alex S. L. Tse & Yeqi Zhu, 2019. "A multi-asset investment and consumption problem with transaction costs," Finance and Stochastics, Springer, vol. 23(3), pages 641-676, July.
    20. Mrudul Y. Jani & Manish R. Betheja & Amrita Bhadoriya & Urmila Chaudhari & Mohamed Abbas & Malak S. Alqahtani, 2022. "Optimal Pricing Policies with an Allowable Discount for Perishable Items under Time-Dependent Sales Price and Trade Credit," Mathematics, MDPI, vol. 10(11), pages 1-19, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.06778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.