IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v27y2020i5p374-395.html
   My bibliography  Save this article

Sequential Hypothesis Testing in Machine Learning, and Crude Oil Price Jump Size Detection

Author

Listed:
  • Michael Roberts
  • Indranil SenGupta

Abstract

In this paper, we present a sequential hypothesis test for the detection of the distribution of jump size in Lévy processes. Infinitesimal generators for the corresponding log-likelihood ratios are presented and analysed. Bounds for infinitesimal generators in terms of super-solutions and sub-solutions are computed. This is shown to be implementable in relation to various classification problems for a crude oil price data set. Machine and deep learning algorithms are implemented to extract a specific deterministic component from the data set, and the deterministic component is implemented to improve the Barndorff-Nielsen & Shephard model, a commonly used stochastic model for derivative and commodity market analysis.

Suggested Citation

  • Michael Roberts & Indranil SenGupta, 2020. "Sequential Hypothesis Testing in Machine Learning, and Crude Oil Price Jump Size Detection," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(5), pages 374-395, September.
  • Handle: RePEc:taf:apmtfi:v:27:y:2020:i:5:p:374-395
    DOI: 10.1080/1350486X.2020.1859943
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2020.1859943
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2020.1859943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shubham Ekapure & Nuruddin Jiruwala & Sohan Patnaik & Indranil SenGupta, 2021. "A data-science-driven short-term analysis of Amazon, Apple, Google, and Microsoft stocks," Papers 2107.14695, arXiv.org.
    2. Fred Espen Benth & Carlo Sgarra, 2024. "A Barndorff-Nielsen and Shephard model with leverage in Hilbert space for commodity forward markets," Finance and Stochastics, Springer, vol. 28(4), pages 1035-1076, October.
    3. Xianfei Hui & Baiqing Sun & Indranil SenGupta & Yan Zhou & Hui Jiang, 2022. "Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning," Papers 2204.02891, arXiv.org, revised Jan 2023.
    4. Minglian Lin & Indranil SenGupta, 2021. "Analysis of optimal portfolio on finite and small time horizons for a stochastic volatility market model," Papers 2104.06293, arXiv.org.
    5. Xianfei Hui & Baiqing Sun & Hui Jiang & Indranil SenGupta, 2021. "Analysis of stock index with a generalized BN-S model: an approach based on machine learning and fuzzy parameters," Papers 2101.08984, arXiv.org, revised Feb 2022.
    6. Minglian Lin & Indranil SenGupta, 2023. "Analysis of optimal portfolio on finite and small-time horizons for a stochastic volatility model with multiple correlated assets," Papers 2302.06778, arXiv.org, revised Dec 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:27:y:2020:i:5:p:374-395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.