IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.01663.html
   My bibliography  Save this paper

Adversarial blockchain queues and trading on a CFMM

Author

Listed:
  • Andrew W. Macpherson

Abstract

We describe a plausible probabilistic model for a blockchain queueing environment in which rational, profit-maximising schedulers impose adversarial disciplines on incoming messages containing a payload that encodes a state transition in a machine. The model can be specialised to apply to chains with fixed or variable block times, traditional priority queue disciplines with `honest' schedulers, or adversarial public mempools. We find conditions under which the model behaves as a bulk-service queue with priority discipline and derive practical expressions for the relative block and message number of a transaction. We study this setup in the context of orders to a CFMM DEX where the execution price a user receives may be quite sensitive to its positioning in the chain -- in particular, to a string of transactions scheduled for prior execution which is not knowable at the time of order creation. We derive statistical models for the price impact of this order flow both in the presence and absence of MEV extraction activity.

Suggested Citation

  • Andrew W. Macpherson, 2023. "Adversarial blockchain queues and trading on a CFMM," Papers 2302.01663, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2302.01663
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.01663
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiahua Xu & Krzysztof Paruch & Simon Cousaert & Yebo Feng, 2021. "SoK: Decentralized Exchanges (DEX) with Automated Market Maker (AMM) Protocols," Papers 2103.12732, arXiv.org, revised Mar 2023.
    2. Matheus V. X. Ferreira & David C. Parkes, 2022. "Credible Decentralized Exchange Design via Verifiable Sequencing Rules," Papers 2209.15569, arXiv.org, revised Apr 2023.
    3. A. Chakraborti & I. Muni-Toke & M. Patriarca & F. Abergel, 2011. "Econophysics Review : II. Agent-based models," Post-Print hal-03332946, HAL.
    4. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    5. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    6. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew W. Macpherson, 2024. "Do backrun auctions protect traders?," Papers 2401.08302, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Šmíd, 2016. "Estimation of zero-intelligence models by L1 data," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1423-1444, September.
    2. Robin Nicole & Peter Sollich, 2017. "Dynamical selection of Nash equilibria using Experience Weighted Attraction Learning: emergence of heterogeneous mixed equilibria," Papers 1706.09763, arXiv.org.
    3. Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2024. "A closer look at the chemical potential of an ideal agent system," Papers 2401.09233, arXiv.org.
    4. Kiran Sharma & Subhradeep Das & Anirban Chakraborti, 2017. "Global Income Inequality and Savings: A Data Science Perspective," Papers 1801.00253, arXiv.org, revised Aug 2018.
    5. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    6. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.
    7. A. O. Glekin & A. Lykov & K. L. Vaninsky, 2014. "On Simulation of Various Effects in Consolidated Order Book," Papers 1402.4150, arXiv.org.
    8. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    9. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    10. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2020. "A path integral approach to business cycle models with large number of agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(4), pages 899-942, October.
    11. Dias, Thiago & Gonçalves, Sebastián, 2024. "Effectiveness of wealth-based vs exchange-based tax systems in reducing inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    12. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2019. "A Statistical Field Approach to Capital Accumulation," Working Papers hal-02280634, HAL.
    13. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    14. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    15. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    16. Pietro DeLellis & Anna DiMeglio & Franco Garofalo & Francesco Lo Iudice, 2017. "The evolving cobweb of relations among partially rational investors," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    17. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A., 2022. "Multifractal risk measures by Macroeconophysics perspective: The case of Brazilian inflation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    18. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2017. "A Path Integral Approach to Interacting Economic Systems with Multiple Heterogeneous Agents," Working Papers hal-01549586, HAL.
    19. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
    20. Buda, Andrzej & Kwapień, Jarosław, 2022. "Agent-based modelling of the global phonographic market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    21. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.01663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.