IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2212.14259.html
   My bibliography  Save this paper

Bipolar Theorems for Sets of Non-negative Random Variables

Author

Listed:
  • Johannes Langner
  • Gregor Svindland

Abstract

This paper assumes a robust, in general not dominated, probabilistic framework and provides necessary and sufficient conditions for a bipolar representation of subsets of the set of all quasi-sure equivalence classes of non-negative random variables, without any further conditions on the underlying measure space. This generalizes and unifies existing bipolar theorems proved under stronger assumptions on the robust framework. Applications are in areas of robust financial modeling.

Suggested Citation

  • Johannes Langner & Gregor Svindland, 2022. "Bipolar Theorems for Sets of Non-negative Random Variables," Papers 2212.14259, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2212.14259
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2212.14259
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niushan Gao & Cosimo Munari, 2020. "Surplus-Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1342-1370, November.
    2. Matteo Burzoni & Marco Maggis, 2019. "Arbitrage-free modeling under Knightian Uncertainty," Papers 1909.04602, arXiv.org, revised Apr 2020.
    3. Felix-Benedikt Liebrich & Marco Maggis & Gregor Svindland, 2020. "Model Uncertainty: A Reverse Approach," Papers 2004.06636, arXiv.org, revised Mar 2022.
    4. Marco Maggis & Thilo Meyer-Brandis & Gregor Svindland, 2016. "The Fatou Closedness under Model Uncertainty," Papers 1610.04085, arXiv.org, revised Oct 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix-Benedikt Liebrich & Marco Maggis & Gregor Svindland, 2020. "Model Uncertainty: A Reverse Approach," Papers 2004.06636, arXiv.org, revised Mar 2022.
    2. Nendel, Max & Streicher, Jan, 2023. "An axiomatic approach to default risk and model uncertainty in rating systems," Journal of Mathematical Economics, Elsevier, vol. 109(C).
    3. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    4. Niushan Gao & Cosimo Munari, 2020. "Surplus-Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1342-1370, November.
    5. Maria Arduca & Cosimo Munari, 2020. "Fundamental theorem of asset pricing with acceptable risk in markets with frictions," Papers 2012.08351, arXiv.org, revised Apr 2022.
    6. Martin Herdegen & Nazem Khan & Cosimo Munari, 2024. "Risk, utility and sensitivity to large losses," Papers 2405.12154, arXiv.org.
    7. Huy N. Chau & Masaaki Fukasawa & Miklos Rasonyi, 2021. "Super-replication with transaction costs under model uncertainty for continuous processes," Papers 2102.02298, arXiv.org.
    8. Felix-Benedikt Liebrich & Max Nendel, 2020. "Separability vs. robustness of Orlicz spaces: financial and economic perspectives," Papers 2009.09007, arXiv.org, revised May 2021.
    9. Maria Arduca & Cosimo Munari, 2023. "Fundamental theorem of asset pricing with acceptable risk in markets with frictions," Finance and Stochastics, Springer, vol. 27(3), pages 831-862, July.
    10. Romain Blanchard & Laurence Carassus, 2022. "Super-replication prices with multiple-priors in discrete time," Papers 2202.06534, arXiv.org.
    11. Felix-Benedikt Liebrich & Cosimo Munari, 2022. "Law-Invariant Functionals that Collapse to the Mean: Beyond Convexity," Mathematics and Financial Economics, Springer, volume 16, number 2, December.
    12. Shuzhen Yang & Wenqing Zhang, 2024. "Asset pricing under model uncertainty with finite time and states," Papers 2408.13048, arXiv.org.
    13. Huy N. Chau & Masaaki Fukasawa & Miklós Rásonyi, 2022. "Super‐replication with transaction costs under model uncertainty for continuous processes," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1066-1085, October.
    14. Matteo Burzoni & Marco Maggis, 2019. "Arbitrage-free modeling under Knightian Uncertainty," Papers 1909.04602, arXiv.org, revised Apr 2020.
    15. Felix-Benedikt Liebrich & Cosimo Munari, 2021. "Law-invariant functionals that collapse to the mean: Beyond convexity," Papers 2106.01281, arXiv.org, revised Jul 2021.
    16. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    17. Gao, Niushan & Munari, Cosimo & Xanthos, Foivos, 2020. "Stability properties of Haezendonck–Goovaerts premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 94-99.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2212.14259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.