IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.20340.html
   My bibliography  Save this paper

Relative portfolio optimization via a value at risk based constraint

Author

Listed:
  • Nicole Bauerle
  • Tamara Goll

Abstract

In this paper, we consider $n$ agents who invest in a general financial market that is free of arbitrage and complete. The aim of each investor is to maximize her expected utility while ensuring, with a specified probability, that her terminal wealth exceeds a benchmark defined by her competitors' performance. This setup introduces an interdependence between agents, leading to a search for Nash equilibria. In the case of two agents and CRRA utility, we are able to derive all Nash equilibria in terms of terminal wealth. For $n>2$ agents and logarithmic utility we distinguish two cases. In the first case, the probabilities in the constraint are small and we can characterize all Nash equilibria. In the second case, the probabilities are larger and we look for Nash equilibria in a certain set. We also discuss the impact of the competition using some numerical examples. As a by-product, we solve some portfolio optimization problems with probability constraints.

Suggested Citation

  • Nicole Bauerle & Tamara Goll, 2025. "Relative portfolio optimization via a value at risk based constraint," Papers 2503.20340, arXiv.org.
  • Handle: RePEc:arx:papers:2503.20340
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.20340
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.20340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.