IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i3p453-471.html
   My bibliography  Save this article

Risk parity portfolio optimization under a Markov regime-switching framework

Author

Listed:
  • Giorgio Costa
  • Roy H. Kwon

Abstract

We formulate and solve a risk parity optimization problem under a Markov regime-switching framework to improve parameter estimation and to systematically mitigate the sensitivity of optimal portfolios to estimation error. A regime-switching factor model of returns is introduced to account for the abrupt changes in the behaviour of economic time series associated with financial cycles. This model incorporates market dynamics in an effort to improve parameter estimation. We proceed to use this model for risk parity optimization and also consider the construction of a robust version of the risk parity optimization by introducing uncertainty structures to the estimated market parameters. We test our model by constructing a regime-switching risk parity portfolio based on the Fama–French three-factor model. The out-of-sample computational results show that a regime-switching risk parity portfolio can consistently outperform its nominal counterpart, maintaining a similar ex post level of risk while delivering higher-than-nominal returns over a long-term investment horizon. Moreover, we present a dynamic portfolio rebalancing policy that further magnifies the benefits of a regime-switching portfolio.

Suggested Citation

  • Giorgio Costa & Roy H. Kwon, 2019. "Risk parity portfolio optimization under a Markov regime-switching framework," Quantitative Finance, Taylor & Francis Journals, vol. 19(3), pages 453-471, March.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:3:p:453-471
    DOI: 10.1080/14697688.2018.1486036
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2018.1486036
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2018.1486036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    2. Guo, Sini & Gu, Jia-Wen & Fok, Christopher H. & Ching, Wai-Ki, 2023. "Online portfolio selection with state-dependent price estimators and transaction costs," European Journal of Operational Research, Elsevier, vol. 311(1), pages 333-353.
    3. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    4. Razvan Oprisor & Roy Kwon, 2020. "Multi-Period Portfolio Optimization with Investor Views under Regime Switching," JRFM, MDPI, vol. 14(1), pages 1-31, December.
    5. Reza Bradrania & Davood Pirayesh Neghab, 2022. "State-dependent Asset Allocation Using Neural Networks," Papers 2211.00871, arXiv.org.
    6. Giorgio Costa & Roy H. Kwon, 2020. "Generalized risk parity portfolio optimization: an ADMM approach," Journal of Global Optimization, Springer, vol. 78(1), pages 207-238, September.
    7. Li, Xiaoyue & Uysal, A. Sinem & Mulvey, John M., 2022. "Multi-period portfolio optimization using model predictive control with mean-variance and risk parity frameworks," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1158-1176.
    8. Giorgio Costa & Roy Kwon, 2020. "A robust framework for risk parity portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 447-466, September.
    9. Bradrania, Reza & Pirayesh Neghab, Davood, 2021. "State-dependent asset allocation using neural networks," MPRA Paper 115254, University Library of Munich, Germany.
    10. Erdinc Akyildirim & Matteo Gambara & Josef Teichmann & Syang Zhou, 2023. "Randomized Signature Methods in Optimal Portfolio Selection," Papers 2312.16448, arXiv.org.
    11. Ting-Fu Chen & Shih-Kuei Lin & An-Sing Chang & Wei-Hao Wang, 2022. "The Pricing Model of Pension Benefit Guaranty Corporation Insurance with Regime-Switching Processes," JRFM, MDPI, vol. 15(6), pages 1-23, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:3:p:453-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.