IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.04086.html
   My bibliography  Save this paper

A Structural Equation Modeling Approach to Understand User's Perceptions of Acceptance of Ride-Sharing Services in Dhaka City

Author

Listed:
  • Md. Mohaimenul Islam Sourav
  • Mohammed Russedul Islam
  • H M Imran Kays
  • Md. Hadiuzzaman

Abstract

This research aims at building a multivariate statistical model for assessing users' perceptions of acceptance of ride-sharing services in Dhaka City. A structured questionnaire is developed based on the users' reported attitudes and perceived risks. A total of 350 normally distributed responses are collected from ride-sharing service users and stakeholders of Dhaka City. Respondents are interviewed to express their experience and opinions on ride-sharing services through the stated preference questionnaire. Structural Equation Modeling (SEM) is used to validate the research hypotheses. Statistical parameters and several trials are used to choose the best SEM. The responses are also analyzed using the Relative Importance Index (RII) method, validating the chosen SEM. Inside SEM, the quality of ride-sharing services is measured by two latent and eighteen observed variables. The latent variable 'safety & security' is more influential than 'service performance' on the overall quality of service index. Under 'safety & security' the other two variables, i.e., 'account information' and 'personal information' are found to be the most significant that impact the decision to share rides with others. In addition, 'risk of conflict' and 'possibility of accident' are identified using the perception model as the lowest contributing variables. Factor analysis reveals the suitability and reliability of the proposed SEM. Identifying the influential parameters in this will help the service providers understand and improve the quality of ride-sharing service for users.

Suggested Citation

  • Md. Mohaimenul Islam Sourav & Mohammed Russedul Islam & H M Imran Kays & Md. Hadiuzzaman, 2022. "A Structural Equation Modeling Approach to Understand User's Perceptions of Acceptance of Ride-Sharing Services in Dhaka City," Papers 2210.04086, arXiv.org, revised Jun 2023.
  • Handle: RePEc:arx:papers:2210.04086
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.04086
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bagley, Michael N & Mokhtarian, Patricia L, 2001. "The impact of residential neighborhood type on travel behavior: A structural equations modeling approach," University of California Transportation Center, Working Papers qt12q634n2, University of California Transportation Center.
    2. Patricia L. Mokhtarian & Michael N. Bagley, 2002. "The impact of residential neighborhood type on travel behavior: A structural equations modeling approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 36(2), pages 279-297.
    3. Hemanta Doloi & Anil Sawhney & K.C. Iyer, 2012. "Structural equation model for investigating factors affecting delay in Indian construction projects," Construction Management and Economics, Taylor & Francis Journals, vol. 30(10), pages 869-884, October.
    4. Arshi Shakeel Faridi & Sameh Monir El-Sayegh, 2006. "Significant factors causing delay in the UAE construction industry," Construction Management and Economics, Taylor & Francis Journals, vol. 24(11), pages 1167-1176.
    5. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    2. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    3. Van Acker, Veronique & Ho, Loan & Stevens, Larissa & Mulley, Corinne, 2020. "Quantifying the effects of childhood and previous residential experiences on the use of public transport," Journal of Transport Geography, Elsevier, vol. 86(C).
    4. Verhetsel, Ann & Vanelslander, Thierry, 2010. "What location policy can bring to sustainable commuting: an empirical study in Brussels and Flanders, Belgium," Journal of Transport Geography, Elsevier, vol. 18(6), pages 691-701.
    5. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    6. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    7. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    8. Singh, Abhilash C. & Faghih Imani, Ahmadreza & Sivakumar, Aruna & Luna Xi, Yang & Miller, Eric J., 2024. "A joint analysis of accessibility and household trip frequencies by travel mode," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    9. Scheiner, Joachim & Holz-Rau, Christian, 2013. "A comprehensive study of life course, cohort, and period effects on changes in travel mode use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 167-181.
    10. Scheiner, Joachim, 2010. "Social inequalities in travel behaviour: trip distances in the context of residential self-selection and lifestyles," Journal of Transport Geography, Elsevier, vol. 18(6), pages 679-690.
    11. Kajosaari, Anna & Hasanzadeh, Kamyar & Kyttä, Marketta, 2019. "Residential dissonance and walking for transport," Journal of Transport Geography, Elsevier, vol. 74(C), pages 134-144.
    12. Miotti, Marco & Needell, Zachary A. & Jain, Rishee K., 2023. "The impact of urban form on daily mobility demand and energy use: Evidence from the United States," Applied Energy, Elsevier, vol. 339(C).
    13. Joachim Scheiner & Christian Holz-Rau, 2007. "Travel mode choice: affected by objective or subjective determinants?," Transportation, Springer, vol. 34(4), pages 487-511, July.
    14. van de Coevering, Paul & Maat, Kees & van Wee, Bert, 2018. "Residential self-selection, reverse causality and residential dissonance. A latent class transition model of interactions between the built environment, travel attitudes and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 466-479.
    15. Md. Kamruzzaman & Simon Washington & Douglas Baker & Wendy Brown & Billie Giles-Corti & Gavin Turrell, 2016. "Built environment impacts on walking for transport in Brisbane, Australia," Transportation, Springer, vol. 43(1), pages 53-77, January.
    16. Næss, Petter & Peters, Sebastian & Stefansdottir, Harpa & Strand, Arvid, 2018. "Causality, not just correlation: Residential location, transport rationales and travel behavior across metropolitan contexts," Journal of Transport Geography, Elsevier, vol. 69(C), pages 181-195.
    17. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.
    18. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    19. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    20. Kim, Seheon & Rasouli, Soora, 2022. "The influence of latent lifestyle on acceptance of Mobility-as-a-Service (MaaS): A hierarchical latent variable and latent class approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 304-319.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.04086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.