IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2207.04004.html
   My bibliography  Save this paper

Pairwise and high-order dependencies in the cryptocurrency trading network

Author

Listed:
  • Tomas Scagliarini
  • Giuseppe Pappalardo
  • Alessio Emanuele Biondo
  • Alessandro Pluchino
  • Andrea Rapisarda
  • Sebastiano Stramaglia

Abstract

In this paper we analyse the effects of information flows in cryptocurrency markets. We first define a cryptocurrency trading network, i.e. the network made using cryptocurrencies as nodes and the Granger causality among their weekly log returns as links, later we analyse its evolution over time. In particular, with reference to years 2020 and 2021, we study the logarithmic US dollar price returns of the cryptocurrency trading network using both pairwise and high-order statistical dependencies, quantified by Granger causality and O-information, respectively. With reference to the former, we find that it shows peaks in correspondence of important events, like e.g., Covid-19 pandemic turbulence or occasional sudden prices rise. The corresponding network structure is rather stable, across weekly time windows in the period considered and the coins are the most influential nodes in the network. In the pairwise description of the network, stable coins seem to play a marginal role whereas, turning high-order dependencies, they appear in the highest number of synergistic information circuits, thus proving that they play a major role for high order effects. With reference to redundancy and synergy with the time evolution of the total transactions in US dollars, we find that their large volume in the first semester of 2021 seems to have triggered a transition in the cryptocurrency network toward a more complex dynamical landscape. Our results show that pairwise and high-order descriptions of complex financial systems provide complementary information for cryptocurrency analysis.

Suggested Citation

  • Tomas Scagliarini & Giuseppe Pappalardo & Alessio Emanuele Biondo & Alessandro Pluchino & Andrea Rapisarda & Sebastiano Stramaglia, 2022. "Pairwise and high-order dependencies in the cryptocurrency trading network," Papers 2207.04004, arXiv.org.
  • Handle: RePEc:arx:papers:2207.04004
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2207.04004
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toan Luu Duc Huynh, 2019. "Spillover Risks on Cryptocurrency Markets: A Look from VAR-SVAR Granger Causality and Student’s-t Copulas," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    2. Aslanidis, Nektarios & Bariviera, Aurelio F. & Martínez-Ibañez, Oscar, 2019. "An analysis of cryptocurrencies conditional cross correlations," Finance Research Letters, Elsevier, vol. 31(C), pages 130-137.
    3. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    4. Koutmos, Dimitrios, 2018. "Return and volatility spillovers among cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 122-127.
    5. Tu, Zhiyong & Xue, Changyong, 2019. "Effect of bifurcation on the interaction between Bitcoin and Litecoin," Finance Research Letters, Elsevier, vol. 31(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnav Hiray & Pratvi Shah & Vishwa Shah & Agam Shah & Sudheer Chava & Mukesh Tiwari, 2023. "Shifting Cryptocurrency Influence: A High-Resolution Network Analysis of Market Leaders," Papers 2307.16874, arXiv.org, revised Jan 2024.
    2. Riccardo De Blasis & Luca Galati & Rosanna Grassi & Giorgio Rizzini, 2024. "Information Flow in the FTX Bankruptcy: A Network Approach," Papers 2407.12683, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    2. Xu, Qiuhua & Zhang, Yixuan & Zhang, Ziyang, 2021. "Tail-risk spillovers in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 38(C).
    3. Ha, Le Thanh & Nham, Nguyen Thi Hong, 2022. "An application of a TVP-VAR extended joint connected approach to explore connectedness between WTI crude oil, gold, stock and cryptocurrencies during the COVID-19 health crisis," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    4. Huynh, Toan Luu Duc & Nasir, Muhammad Ali & Vo, Xuan Vinh & Nguyen, Thong Trung, 2020. "“Small things matter most”: The spillover effects in the cryptocurrency market and gold as a silver bullet," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    5. Nikolaos A. Kyriazis, 2019. "A Survey on Empirical Findings about Spillovers in Cryptocurrency Markets," JRFM, MDPI, vol. 12(4), pages 1-17, November.
    6. Yousaf, Imran & Jareño, Francisco & Tolentino, Marta, 2023. "Connectedness between Defi assets and equity markets during COVID-19: A sector analysis," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    7. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    8. Proelss, Juliane & Sévigny, Stéphane & Schweizer, Denis, 2023. "GameFi: The perfect symbiosis of blockchain, tokens, DeFi, and NFTs?," International Review of Financial Analysis, Elsevier, vol. 90(C).
    9. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "Volatility spillovers and other dynamics between cryptocurrencies and the energy and bond markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 1-13.
    10. Khalid Khan & Jiluo Sun & Sinem Derindere Koseoglu & Ashfaq U. Rehman, 2021. "Revisiting Bitcoin Price Behavior Under Global Economic Uncertainty," SAGE Open, , vol. 11(3), pages 21582440211, August.
    11. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    12. Kim, Myeong Jun & Canh, Nguyen Phuc & Park, Sung Y., 2021. "Causal relationship among cryptocurrencies: A conditional quantile approach," Finance Research Letters, Elsevier, vol. 42(C).
    13. Martin Waltz & Abhay Kumar Singh & Ostap Okhrin, 2022. "Vulnerability-CoVaR: investigating the crypto-market," Quantitative Finance, Taylor & Francis Journals, vol. 22(9), pages 1731-1745, September.
    14. Charfeddine, Lanouar & Benlagha, Noureddine & Khediri, Karim Ben, 2022. "An intra-cryptocurrency analysis of volatility connectedness and its determinants: Evidence from mining coins, non-mining coins and tokens," Research in International Business and Finance, Elsevier, vol. 62(C).
    15. María de la O González & Francisco Jareño & Frank S. Skinner, 2020. "Nonlinear Autoregressive Distributed Lag Approach: An Application on the Connectedness between Bitcoin Returns and the Other Ten Most Relevant Cryptocurrency Returns," Mathematics, MDPI, vol. 8(5), pages 1-22, May.
    16. Balcilar, Mehmet & Ozdemir, Huseyin & Agan, Busra, 2022. "Effects of COVID-19 on cryptocurrency and emerging market connectedness: Empirical evidence from quantile, frequency, and lasso networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    17. He, Xie & Hamori, Shigeyuki, 2024. "The higher the better? Hedging and investment strategies in cryptocurrency markets: Insights from higher moment spillovers," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    18. Jareño, Francisco & González, María de la O. & López, Raquel & Ramos, Ana Rosa, 2021. "Cryptocurrencies and oil price shocks: A NARDL analysis in the COVID-19 pandemic," Resources Policy, Elsevier, vol. 74(C).
    19. Li, Chao & Yang, Haijun, 2022. "Will memecoins’ surge trigger a crypto crash? Evidence from the connectedness between leading cryptocurrencies and memecoins," Finance Research Letters, Elsevier, vol. 50(C).
    20. Walid Mensi & Mobeen Ur Rehman & Muhammad Shafiullah & Khamis Hamed Al-Yahyaee & Ahmet Sensoy, 2021. "High frequency multiscale relationships among major cryptocurrencies: portfolio management implications," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-21, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2207.04004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.