IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2207.03397.html
   My bibliography  Save this paper

Asset Trading in Continuous Time: A Cautionary Tale

Author

Listed:
  • William R. Zame

Abstract

The continuous time model of dynamic asset trading is the central model of modern finance. Because trading cannot in fact take place at every moment of time, it would seem desirable to show that the continuous time model can be viewed as the limit of models in which trading can occur only at (many) discrete moments of time. This paper demonstrates that, if we take terminal wealth constraints and self-financing constraints as seriously in the discrete model as in the continuous model, then the continuous trading model need not be the limit of discrete trading models. This raises serious foundational questions about the continuous time model.

Suggested Citation

  • William R. Zame, 2022. "Asset Trading in Continuous Time: A Cautionary Tale," Papers 2207.03397, arXiv.org.
  • Handle: RePEc:arx:papers:2207.03397
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2207.03397
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Darrell Duffie & Chi-Fu Huang, 2005. "Implementing Arrow-Debreu Equilibria By Continuous Trading Of Few Long-Lived Securities," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 4, pages 97-127, World Scientific Publishing Co. Pte. Ltd..
    2. Levine, David K & Pesendorfer, Wolfgang, 1995. "When Are Agents Negligible?," American Economic Review, American Economic Association, vol. 85(5), pages 1160-1170, December.
    3. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    4. Pradeep Dubey & John Geanakoplos & Martin Shubik, 2005. "Default and Punishment in General Equilibrium," Econometrica, Econometric Society, vol. 73(1), pages 1-37, January.
    5. Zame, William R, 1993. "Efficiency and the Role of Default When Security Markets Are Incomplete," American Economic Review, American Economic Association, vol. 83(5), pages 1142-1164, December.
    6. Robert M. Anderson & Roberto C. Raimondo, 2008. "Equilibrium in Continuous-Time Financial Markets: Endogenously Dynamically Complete Markets," Econometrica, Econometric Society, vol. 76(4), pages 841-907, July.
    7. Tomasz Sadzik & Ennio Stacchetti, 2015. "Agency Models With Frequent Actions," Econometrica, Econometric Society, vol. 83, pages 193-237, January.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    10. David M. Kreps, 1982. "Multiperiod Securities and the Efficient Allocation of Risk: A Comment on the Black-Scholes Option Pricing Model," NBER Chapters, in: The Economics of Information and Uncertainty, pages 203-232, National Bureau of Economic Research, Inc.
    11. He, Hua, 1990. "Convergence from Discrete- to Continuous-Time Contingent Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 523-546.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/5374 is not listed on IDEAS
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    4. Bolton, Patrick & Li, Ye & Wang, Neng & Yang, Jinqiang, 2020. "Dynamic Banking and the Value of Deposits," Working Paper Series 2020-13, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    5. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    6. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    7. repec:dau:papers:123456789/5590 is not listed on IDEAS
    8. Mark Britten-Jones & Anthony Neuberger, 1996. "Arbitrage pricing with incomplete markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 347-363.
    9. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    10. Timothy Johnson, 2015. "Reciprocity as a Foundation of Financial Economics," Journal of Business Ethics, Springer, vol. 131(1), pages 43-67, September.
    11. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    12. Carpenter, Jennifer N., 1998. "The exercise and valuation of executive stock options," Journal of Financial Economics, Elsevier, vol. 48(2), pages 127-158, May.
    13. Kraft, Holger & Steffensen, Mogens, 2008. "How to invest optimally in corporate bonds: A reduced-form approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 348-385, February.
    14. Wang, Xiao-Tian & Zhu, En-Hui & Tang, Ming-Ming & Yan, Hai-Gang, 2010. "Scaling and long-range dependence in option pricing II: Pricing European option with transaction costs under the mixed Brownian–fractional Brownian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 445-451.
    15. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    16. Kraft, Holger & Steffensen, Mogens, 2009. "Asset allocation with contagion and explicit bankruptcy procedures," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 147-167, January.
    17. Bryan Ellickson, 1995. "Intertemporal Insurance," UCLA Economics Working Papers 742, UCLA Department of Economics.
    18. Elyès Jouini & Clotilde Napp, 2002. "Arbitrage Pricing And Equilibrium Pricing: Compatibility Conditions," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume III), chapter 6, pages 131-158, World Scientific Publishing Co. Pte. Ltd..
    19. Jiang, Wang, 1996. "The term structure of interest rates in a pure exchange economy with heterogeneous investors," Journal of Financial Economics, Elsevier, vol. 41(1), pages 75-110, May.
    20. Carolyn W. Chang, 1995. "A No-Arbitrage Martingale Analysis For Jump-Diffusion Valuation," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 18(3), pages 351-381, September.
    21. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    22. Jiang Wang, 1995. "The Term Structure of Interest Rates in a Pure Exchange Economy with Heterogeneous Investors," NBER Working Papers 5172, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2207.03397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.