IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2206.07130.html
   My bibliography  Save this paper

The probability flow in the Stock market and Spontaneous symmetry breaking in Quantum Finance

Author

Listed:
  • Ivan Arraut
  • Joao Alexandre Lobo Marques
  • Sergio Gomes

Abstract

The Spontaneous Symmetry breaking in Quantum Finance considers the martingale condition in the stock market as a vacuum state if we express the financial equations in the Hamiltonian form. The original analysis for this phenomena ignores completely the kinetic terms in the neighborhood of the minimal of the potential terms. This is correct in most of the cases. However, when we deal with the Martingale condition, it comes out that the kinetic terms can also behave as potential terms and then reproduce a shift on the effective location of the vacuum (Martingale). In this paper we analyze the effective symmetry breaking patterns and the connected vacuum degeneracy for these special circumstances. Within the same scenario, we analyze the connection between the flow of information and the multiplicity of martingale states, providing in this way powerful tools for analyzing the dynamic of the stock market.

Suggested Citation

  • Ivan Arraut & Joao Alexandre Lobo Marques & Sergio Gomes, 2022. "The probability flow in the Stock market and Spontaneous symmetry breaking in Quantum Finance," Papers 2206.07130, arXiv.org.
  • Handle: RePEc:arx:papers:2206.07130
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2206.07130
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arraut, Ivan & Au, Alan & Tse, Alan Ching-biu & Segovia, Carlos, 2019. "The connection between multiple prices of an Option at a given time with single prices defined at different times: The concept of weak-value in quantum finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    2. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Jones, E. Philip, 1984. "Option arbitrage and strategy with large price changes," Journal of Financial Economics, Elsevier, vol. 13(1), pages 91-113, March.
    7. Ivan Arraut & Alan Au & Alan Ching-biu Tse & Carlos Segovia, 2019. "The connection between multiple prices of an Option at a given time with single prices defined at different times: The concept of weak-value in quantum finance," Papers 1905.05813, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Arraut & Alan Au & Alan Ching-biu Tse, 2020. "On the multiplicity of the martingale condition: Spontaneous symmetry breaking in Quantum Finance," Papers 2004.11270, arXiv.org.
    2. Ivan Arraut & João Alexandre Lobo Marques & Sergio Gomes, 2021. "The Probability Flow in the Stock Market and Spontaneous Symmetry Breaking in Quantum Finance," Mathematics, MDPI, vol. 9(21), pages 1-18, November.
    3. Ivan Arraut & Alan Au & Alan Ching-biu Tse & Joao Alexandre Lobo Marques, 2019. "On the probability flow in the Stock market I: The Black-Scholes case," Papers 2001.00516, arXiv.org.
    4. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    5. Ivan Arraut & Alan Au & Alan Ching-biu Tse, 2020. "Spontaneous symmetry breaking in Quantum Finance," Papers 2011.05278, arXiv.org.
    6. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    7. S H Martzoukos, 2009. "Real R&D options and optimal activation of two-dimensional random controls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 843-858, June.
    8. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.
    9. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. James Kau & Donald Keenan, 1999. "Catastrophic Default and Credit Risk for Lending Institutions," Journal of Financial Services Research, Springer;Western Finance Association, vol. 15(2), pages 87-102, March.
    11. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    12. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    13. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    14. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.
    15. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    16. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    17. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    18. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    19. Malz, Allan M., 1996. "Using option prices to estimate realignment probabilities in the European Monetary System: the case of sterling-mark," Journal of International Money and Finance, Elsevier, vol. 15(5), pages 717-748, October.
    20. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.07130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.