IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2206.06764.html
   My bibliography  Save this paper

Microfounding GARCH Models and Beyond: A Kyle-inspired Model with Adaptive Agents

Author

Listed:
  • Michele Vodret
  • Iacopo Mastromatteo
  • Bence Toth
  • Michael Benzaquen

Abstract

We relax the strong rationality assumption for the agents in the paradigmatic Kyle model of price formation, thereby reconciling the framework of asymmetrically informed traders with the Adaptive Market Hypothesis, where agents use inductive rather than deductive reasoning. Building on these ideas, we propose a stylised model able to account parsimoniously for a rich phenomenology, ranging from excess volatility to volatility clustering. While characterising the excess-volatility dynamics, we provide a microfoundation for GARCH models. Volatility clustering is shown to be related to the self-excited dynamics induced by traders' behaviour, and does not rely on clustered fundamental innovations. Finally, we propose an extension to account for the fragile dynamics exhibited by real markets during flash crashes.

Suggested Citation

  • Michele Vodret & Iacopo Mastromatteo & Bence Toth & Michael Benzaquen, 2022. "Microfounding GARCH Models and Beyond: A Kyle-inspired Model with Adaptive Agents," Papers 2206.06764, arXiv.org.
  • Handle: RePEc:arx:papers:2206.06764
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2206.06764
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, October.
    2. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, October.
    3. Roger Farmer & Jean-Philippe Bouchaud, 2020. "Self-Fulfilling Prophecies, Quasi Non-Ergodicity & Wealth Inequality," NBER Working Papers 28261, National Bureau of Economic Research, Inc.
    4. Robert J. Shiller, 2014. "Speculative Asset Prices," American Economic Review, American Economic Association, vol. 104(6), pages 1486-1517, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2022. "Microfounding GARCH Models and Beyond: A Kyle-inspired Model with Adaptive Agents," Working Papers hal-03797251, HAL.
    2. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2023. "Microfounding GARCH models and beyond: a Kyle-inspired model with adaptive agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 599-625, July.
    3. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    4. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    5. Pištěk, Miroslav & Slanina, František, 2011. "Diversity of scales makes an advantage: The case of the Minority Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2549-2561.
    6. D. S. Grebenkov & J. Serror, 2013. "Following a Trend with an Exponential Moving Average: Analytical Results for a Gaussian Model," Papers 1308.5658, arXiv.org.
    7. Chen, Huan & Mai, Yong & Li, Sai-Ping, 2014. "Analysis of network clustering behavior of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 360-367.
    8. Denis S. Grebenkov & Jeremy Serror, 2014. "Optimal Allocation of Trend Following Strategies," Papers 1410.8409, arXiv.org.
    9. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    10. Sebastien Valeyre, 2022. "Optimal trend following portfolios," Papers 2201.06635, arXiv.org.
    11. Grebenkov, Denis S. & Serror, Jeremy, 2015. "Optimal allocation of trend following strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 107-125.
    12. Philippe Jacquinot & Nikolay Sukhomlin, 2010. "A direct formulation of implied volatility in the Black-Scholes model," Post-Print hal-02533014, HAL.
    13. Wang, Jie & Wang, Jun, 2020. "Cross-correlation complexity and synchronization of the financial time series on Potts dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    14. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    15. Baaquie, Belal E. & Yu, Miao & Du, Xin, 2016. "Multiple commodities in statistical microeconomics: Model and market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 912-929.
    16. Zhaoyuan Li & Maozai Tian, 2017. "A New Method For Dynamic Stock Clustering Based On Spectral Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 373-392, October.
    17. Xinyu Wang & Liang Zhao & Ning Zhang & Liu Feng & Haibo Lin, 2022. "Stability of China's Stock Market: Measure and Forecast by Ricci Curvature on Network," Papers 2204.06692, arXiv.org.
    18. Baaquie, Belal Ehsan, 2018. "Bonds with index-linked stochastic coupons in quantum finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 148-169.
    19. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    20. Anirban Chakraborti & Kiran Sharma & Hirdesh K. Pharasi & Sourish Das & Rakesh Chatterjee & Thomas H. Seligman, 2018. "Characterization of catastrophic instabilities: Market crashes as paradigm," Papers 1801.07213, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.06764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.