IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2206.02993.html
   My bibliography  Save this paper

False Consensus, Information Theory, and Prediction Markets

Author

Listed:
  • Yuqing Kong
  • Grant Schoenebeck

Abstract

We study a setting where Bayesian agents with a common prior have private information related to an event's outcome and sequentially make public announcements relating to their information. Our main result shows that when agents' private information is independent conditioning on the event's outcome whenever agents have similar beliefs about the outcome, their information is aggregated. That is, there is no false consensus. Our main result has a short proof based on a natural information theoretic framework. A key ingredient of the framework is the equivalence between the sign of the ``interaction information'' and a super/sub-additive property of the value of people's information. This provides an intuitive interpretation and an interesting application of the interaction information, which measures the amount of information shared by three random variables. We illustrate the power of this information theoretic framework by reproving two additional results within it: 1) that agents quickly agree when announcing (summaries of) beliefs in round robin fashion [Aaronson 2005]; and 2) results from [Chen et al 2010] on when prediction market agents should release information to maximize their payment. We also interpret the information theoretic framework and the above results in prediction markets by proving that the expected reward of revealing information is the conditional mutual information of the information revealed.

Suggested Citation

  • Yuqing Kong & Grant Schoenebeck, 2022. "False Consensus, Information Theory, and Prediction Markets," Papers 2206.02993, arXiv.org, revised Nov 2022.
  • Handle: RePEc:arx:papers:2206.02993
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2206.02993
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yiling Chen & David M Pennock, 2012. "A Utility Framework for Bounded-Loss Market Makers," Papers 1206.5252, arXiv.org.
    2. Robin Hanson, 2003. "Combinatorial Information Market Design," Information Systems Frontiers, Springer, vol. 5(1), pages 107-119, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siddarth Srinivasan & Ezra Karger & Yiling Chen, 2023. "Self-Resolving Prediction Markets for Unverifiable Outcomes," Papers 2306.04305, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dian Yu & Jianjun Gao & Weiping Wu & Zizhuo Wang, 2022. "Price Interpretability of Prediction Markets: A Convergence Analysis," Papers 2205.08913, arXiv.org, revised Nov 2023.
    2. Siddarth Srinivasan & Ezra Karger & Yiling Chen, 2023. "Self-Resolving Prediction Markets for Unverifiable Outcomes," Papers 2306.04305, arXiv.org.
    3. Razvan Tarnaud, 2019. "Convergence within binary market scoring rules," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 1017-1050, November.
    4. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    5. Marko Corn & Nejc Rov{z}man, 2021. "Unihedge -- A decentralized market prediction platform," Papers 2108.11631, arXiv.org, revised Dec 2021.
    6. Rafael Frongillo, 2022. "Quantum Information Elicitation," Papers 2203.07469, arXiv.org.
    7. Karimi, Majid & Zaerpour, Nima, 2022. "Put your money where your forecast is: Supply chain collaborative forecasting with cost-function-based prediction markets," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1035-1049.
    8. Michael Ostrovsky, 2012. "Information Aggregation in Dynamic Markets With Strategic Traders," Econometrica, Econometric Society, vol. 80(6), pages 2595-2647, November.
    9. Galanis, S. & Ioannou, C. & Kotronis, S., 2019. "Information Aggregation Under Ambiguity: Theory and Experimental Evidence," Working Papers 20/05, Department of Economics, City University London.
    10. Wolfers, Justin & Zitzewitz, Eric, 2006. "Prediction Markets in Theory and Practice," CEPR Discussion Papers 5578, C.E.P.R. Discussion Papers.
    11. Mikuláš Gangur & Miroslav Plevný, 2014. "Tools for Consumer Rights Protection in the Prediction of Electronic Virtual Market and Technological Changes," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(36), pages 578-578, May.
    12. Bradly Alicea, 2014. "Contextual and Structural Representations of Market-mediated Economic Value," Papers 1403.7021, arXiv.org.
    13. Galanis Spyros & Kotronis Stelios, 2021. "Updating Awareness and Information Aggregation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 21(2), pages 613-635, June.
    14. Bergemann, Dirk & Ottaviani, Marco, 2021. "Information Markets and Nonmarkets," CEPR Discussion Papers 16459, C.E.P.R. Discussion Papers.
    15. Pavel Atanasov & Phillip Rescober & Eric Stone & Samuel A. Swift & Emile Servan-Schreiber & Philip Tetlock & Lyle Ungar & Barbara Mellers, 2017. "Distilling the Wisdom of Crowds: Prediction Markets vs. Prediction Polls," Management Science, INFORMS, vol. 63(3), pages 691-706, March.
    16. Hanea, A.M. & McBride, M.F. & Burgman, M.A. & Wintle, B.C. & Fidler, F. & Flander, L. & Twardy, C.R. & Manning, B. & Mascaro, S., 2017. "I nvestigate D iscuss E stimate A ggregate for structured expert judgement," International Journal of Forecasting, Elsevier, vol. 33(1), pages 267-279.
    17. Ledyard, John & Hanson, Robin & Ishikida, Takashi, 2009. "An experimental test of combinatorial information markets," Journal of Economic Behavior & Organization, Elsevier, vol. 69(2), pages 182-189, February.
    18. Snowberg, Erik & Wolfers, Justin & Zitzewitz, Eric, 2013. "Prediction Markets for Economic Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 657-687, Elsevier.
    19. Sam M. Werner & Daniel Perez & Lewis Gudgeon & Ariah Klages-Mundt & Dominik Harz & William J. Knottenbelt, 2021. "SoK: Decentralized Finance (DeFi)," Papers 2101.08778, arXiv.org, revised Sep 2022.
    20. Paul J. Healy & Sera Linardi & J. Richard Lowery & John O. Ledyard, 2010. "Prediction Markets: Alternative Mechanisms for Complex Environments with Few Traders," Management Science, INFORMS, vol. 56(11), pages 1977-1996, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.02993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.