IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.04563.html
   My bibliography  Save this paper

Portfolio Construction with Gaussian Mixture Returns and Exponential Utility via Convex Optimization

Author

Listed:
  • Eric Luxenberg
  • Stephen Boyd

Abstract

We consider the problem of choosing an optimal portfolio, assuming the asset returns have a Gaussian mixture (GM) distribution, with the objective of maximizing expected exponential utility. In this paper we show that this problem is convex, and readily solved exactly using domain-specific languages for convex optimization, without the need for sampling or scenarios. We then show how the closely related problem of minimizing entropic value at risk can also be formulated as a convex optimization problem.

Suggested Citation

  • Eric Luxenberg & Stephen Boyd, 2022. "Portfolio Construction with Gaussian Mixture Returns and Exponential Utility via Convex Optimization," Papers 2205.04563, arXiv.org, revised Aug 2022.
  • Handle: RePEc:arx:papers:2205.04563
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.04563
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    2. Vedat Akgiray & G. Geoffrey Booth, 1987. "Compound Distribution Models Of Stock Returns: An Empirical Comparison," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 10(3), pages 269-280, September.
    3. Tobias Rydén & Timo Teräsvirta & Stefan Åsbrink, 1998. "Stylized facts of daily return series and the hidden Markov model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(3), pages 217-244.
    4. Rania Hentati & Jean-Luc Prigent, 2011. "Portfolio Optimization Within Mixture Of Distributions," Post-Print hal-00607105, HAL.
    5. Fred D. Arditti, 1967. "Risk And The Required Return On Equity," Journal of Finance, American Finance Association, vol. 22(1), pages 19-36, March.
    6. Atanu Saha, 1993. "Expo-Power Utility: A ‘Flexible’ Form for Absolute and Relative Risk Aversion," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 905-913.
    7. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    8. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    9. Buckley, Ian & Saunders, David & Seco, Luis, 2008. "Portfolio optimization when asset returns have the Gaussian mixture distribution," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1434-1461, March.
    10. Scott, Robert C & Horvath, Philip A, 1980. "On the Direction of Preference for Moments of Higher Order Than the Variance," Journal of Finance, American Finance Association, vol. 35(4), pages 915-919, September.
    11. Levy, H & Markowtiz, H M, 1979. "Approximating Expected Utility by a Function of Mean and Variance," American Economic Review, American Economic Association, vol. 69(3), pages 308-317, June.
    12. Hanoch, Giora & Levy, Haim, 1970. "Efficient Portfolio Selection with Quadratic and Cubic Utility," The Journal of Business, University of Chicago Press, vol. 43(2), pages 181-189, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    2. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    3. Chunhachinda, Pornchai & Dandapani, Krishnan & Hamid, Shahid & Prakash, Arun J., 1997. "Portfolio selection and skewness: Evidence from international stock markets," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 143-167, February.
    4. Yan, Hanhuan & Han, Liyan, 2019. "Empirical distributions of stock returns: Mixed normal or kernel density?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 473-486.
    5. Eric Jondeau & Michael Rockinger, 2005. "Conditional Asset Allocation under Non-Normality: How Costly is the Mean-Variance Criterion?," FAME Research Paper Series rp132, International Center for Financial Asset Management and Engineering.
    6. Goh, Joel Weiqiang & Lim, Kian Guan & Sim, Melvyn & Zhang, Weina, 2012. "Portfolio value-at-risk optimization for asymmetrically distributed asset returns," European Journal of Operational Research, Elsevier, vol. 221(2), pages 397-406.
    7. Levy, Moshe & Kaplanski, Guy, 2015. "Portfolio selection in a two-regime world," European Journal of Operational Research, Elsevier, vol. 242(2), pages 514-524.
    8. Tilman H. Drerup & Matthias Wibral & Christian Zimpelmann, 2023. "Skewness expectations and portfolio choice," Experimental Economics, Springer;Economic Science Association, vol. 26(1), pages 107-144, March.
    9. Colasante, Annarita & Riccetti, Luca, 2020. "Risk aversion, prudence and temperance: It is a matter of gap between moments," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
    10. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
    11. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    12. Dai, Yingtong & Harris, Richard D.F., 2023. "Average tail risk and aggregate stock returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    13. Luca Riccetti, 2013. "A copula–GARCH model for macro asset allocation of a portfolio with commodities," Empirical Economics, Springer, vol. 44(3), pages 1315-1336, June.
    14. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    15. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    16. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.
    17. Prakash, Arun J. & Chang, Chun-Hao & Pactwa, Therese E., 2003. "Selecting a portfolio with skewness: Recent evidence from US, European, and Latin American equity markets," Journal of Banking & Finance, Elsevier, vol. 27(7), pages 1375-1390, July.
    18. Holzmann, Hajo & Schwaiger, Florian, 2016. "Testing for the number of states in hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 318-330.
    19. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Leibniz Centre for European Economic Research.
    20. Elyasiani, Elyas & Gambarelli, Luca & Muzzioli, Silvia, 2020. "Moment risk premia and the cross-section of stock returns in the European stock market," Journal of Banking & Finance, Elsevier, vol. 111(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.04563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.