IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2203.17146.html
   My bibliography  Save this paper

Approximate Group Fairness for Clustering

Author

Listed:
  • Bo Li
  • Lijun Li
  • Ankang Sun
  • Chenhao Wang
  • Yingfan Wang

Abstract

We incorporate group fairness into the algorithmic centroid clustering problem, where $k$ centers are to be located to serve $n$ agents distributed in a metric space. We refine the notion of proportional fairness proposed in [Chen et al., ICML 2019] as {\em core fairness}, and $k$-clustering is in the core if no coalition containing at least $n/k$ agents can strictly decrease their total distance by deviating to a new center together. Our solution concept is motivated by the situation where agents are able to coordinate and utilities are transferable. A string of existence, hardness and approximability results is provided. Particularly, we propose two dimensions to relax core requirements: one is on the degree of distance improvement, and the other is on the size of deviating coalition. For both relaxations and their combination, we study the extent to which relaxed core fairness can be satisfied in metric spaces including line, tree and general metric space, and design approximation algorithms accordingly.

Suggested Citation

  • Bo Li & Lijun Li & Ankang Sun & Chenhao Wang & Yingfan Wang, 2022. "Approximate Group Fairness for Clustering," Papers 2203.17146, arXiv.org.
  • Handle: RePEc:arx:papers:2203.17146
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2203.17146
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaotie Deng & Christos H. Papadimitriou, 1994. "On the Complexity of Cooperative Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 19(2), pages 257-266, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nan Zhang & Heng Xu, 2024. "Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning," Information Systems Research, INFORMS, vol. 35(2), pages 469-488, June.
    2. Giulia Cesari & Roberto Lucchetti & Stefano Moretti, 2017. "Generalized additive games," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(4), pages 919-939, November.
    3. Martí Jané Ballarín, 2023. "The complexity of power indices in voting games with incompatible players," UB School of Economics Working Papers 2023/441, University of Barcelona School of Economics.
    4. Yuto Ushioda & Masato Tanaka & Tomomi Matsui, 2022. "Monte Carlo Methods for the Shapley–Shubik Power Index," Games, MDPI, vol. 13(3), pages 1-14, June.
    5. Michel Grabisch & Agnieszka Rusinowska, 2020. "k -additive upper approximation of TU-games," PSE-Ecole d'économie de Paris (Postprint) halshs-02860802, HAL.
    6. Csóka, Péter & Illés, Ferenc & Solymosi, Tamás, 2022. "On the Shapley value of liability games," European Journal of Operational Research, Elsevier, vol. 300(1), pages 378-386.
    7. Gustavo Bergantiños & Juan D. Moreno-Ternero, 2022. "On the axiomatic approach to sharing the revenues from broadcasting sports leagues," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 58(2), pages 321-347, February.
    8. Briec, Walter & Mussard, Stéphane, 2014. "Efficient firm groups: Allocative efficiency in cooperative games," European Journal of Operational Research, Elsevier, vol. 239(1), pages 286-296.
    9. S. Schreider & P. Zeephongsekul & B. Abbasi & M. Fernandes, 2013. "Game theoretic approach for fertilizer application: looking for the propensity to cooperate," Annals of Operations Research, Springer, vol. 206(1), pages 385-400, July.
    10. Meinhardt, Holger Ingmar, 2021. "Disentangle the Florentine Families Network by the Pre-Kernel," MPRA Paper 106482, University Library of Munich, Germany.
    11. Daphne Cornelisse & Thomas Rood & Mateusz Malinowski & Yoram Bachrach & Tal Kachman, 2022. "Neural Payoff Machines: Predicting Fair and Stable Payoff Allocations Among Team Members," Papers 2208.08798, arXiv.org.
    12. Xiaotie Deng & Toshihide Ibaraki & Hiroshi Nagamochi, 1999. "Algorithmic Aspects of the Core of Combinatorial Optimization Games," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 751-766, August.
    13. Benedikt Bünz & Benjamin Lubin & Sven Seuken, 2022. "Designing Core-Selecting Payment Rules: A Computational Search Approach," Information Systems Research, INFORMS, vol. 33(4), pages 1157-1173, December.
    14. A. Saavedra-Nieves, 2023. "On stratified sampling for estimating coalitional values," Annals of Operations Research, Springer, vol. 320(1), pages 325-353, January.
    15. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2018. "Group based centrality for immunization of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 35-47.
    16. van den Brink, René & Rusinowska, Agnieszka, 2022. "The degree measure as utility function over positions in graphs and digraphs," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1033-1044.
    17. Trudeau, Christian & Vidal-Puga, Juan, 2020. "Clique games: A family of games with coincidence between the nucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
    18. Benati, Stefano & Rizzi, Romeo & Tovey, Craig, 2015. "The complexity of power indexes with graph restricted coalitions," Mathematical Social Sciences, Elsevier, vol. 76(C), pages 53-63.
    19. Xin Chen & Jiawei Zhang, 2009. "A Stochastic Programming Duality Approach to Inventory Centralization Games," Operations Research, INFORMS, vol. 57(4), pages 840-851, August.
    20. José M. Jiménez Gómez & María del Carmen Marco Gil & Pedro Gadea Blanco, 2010. "Some game-theoretic grounds for meeting people half-way," Working Papers. Serie AD 2010-04, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2203.17146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.