IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.09359.html
   My bibliography  Save this paper

Machine Learning Models in Stock Market Prediction

Author

Listed:
  • Gurjeet Singh

Abstract

The paper focuses on predicting the Nifty 50 Index by using 8 Supervised Machine Learning Models. The techniques used for empirical study are Adaptive Boost (AdaBoost), k-Nearest Neighbors (kNN), Linear Regression (LR), Artificial Neural Network (ANN), Random Forest (RF), Stochastic Gradient Descent (SGD), Support Vector Machine (SVM) and Decision Trees (DT). Experiments are based on historical data of Nifty 50 Index of Indian Stock Market from 22nd April, 1996 to 16th April, 2021, which is time series data of around 25 years. During the period there were 6220 trading days excluding all the non trading days. The entire trading dataset was divided into 4 subsets of different size-25% of entire data, 50% of entire data, 75% of entire data and entire data. Each subset was further divided into 2 parts-training data and testing data. After applying 3 tests- Test on Training Data, Test on Testing Data and Cross Validation Test on each subset, the prediction performance of the used models were compared and after comparison, very interesting results were found. The evaluation results indicate that Adaptive Boost, k- Nearest Neighbors, Random Forest and Decision Trees under performed with increase in the size of data set. Linear Regression and Artificial Neural Network shown almost similar prediction results among all the models but Artificial Neural Network took more time in training and validating the model. Thereafter Support Vector Machine performed better among rest of the models but with increase in the size of data set, Stochastic Gradient Descent performed better than Support Vector Machine.

Suggested Citation

  • Gurjeet Singh, 2022. "Machine Learning Models in Stock Market Prediction," Papers 2202.09359, arXiv.org.
  • Handle: RePEc:arx:papers:2202.09359
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.09359
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelo Leogrande & Carlo Drago & Massimo Arnone, 2024. "Analyzing Regional Disparities in E-Commerce Adoption Among Italian SMEs: Integrating Machine Learning Clustering and Predictive Models with Econometric Analysis," Working Papers hal-04700413, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.09359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.