IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.00871.html
   My bibliography  Save this paper

Bayesian Imputation with Optimal Look-Ahead-Bias and Variance Tradeoff

Author

Listed:
  • Jose Blanchet
  • Fernando Hernandez
  • Viet Anh Nguyen
  • Markus Pelger
  • Xuhui Zhang

Abstract

Missing time-series data is a prevalent problem in many prescriptive analytics models in operations management, healthcare and finance. Imputation methods for time-series data are usually applied to the full panel data with the purpose of training a prescriptive model for a downstream out-of-sample task. For example, the imputation of missing asset returns may be applied before estimating an optimal portfolio allocation. However, this practice can result in a look-ahead-bias in the future performance of the downstream task, and there is an inherent trade-off between the look-ahead-bias of using the entire data set for imputation and the larger variance of using only the training portion of the data set for imputation. By connecting layers of information revealed in time, we propose a Bayesian consensus posterior that fuses an arbitrary number of posteriors to optimize the variance and look-ahead-bias trade-off in the imputation. We derive tractable two-step optimization procedures for finding the optimal consensus posterior, with Kullback-Leibler divergence and Wasserstein distance as the dissimilarity measure between posterior distributions. We demonstrate in simulations and in an empirical study the benefit of our imputation mechanism for portfolio allocation with missing returns.

Suggested Citation

  • Jose Blanchet & Fernando Hernandez & Viet Anh Nguyen & Markus Pelger & Xuhui Zhang, 2022. "Bayesian Imputation with Optimal Look-Ahead-Bias and Variance Tradeoff," Papers 2202.00871, arXiv.org, revised Apr 2023.
  • Handle: RePEc:arx:papers:2202.00871
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.00871
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cacoullos, T., 2014. "Polar angle tangent vectors follow Cauchy distributions under spherical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 147-153.
    2. Müller K. & Richter W.-D., 2016. "Extreme value distributions for dependent jointly ln,p-symmetrically distributed random variables," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-33, February.
    3. Falk, Michael, 1998. "A Note on the Comedian for Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 306-317, November.
    4. Kume, Alfred & Hashorva, Enkelejd, 2012. "Calculation of Bayes premium for conditional elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 632-635.
    5. Jacob, P. & Suquet, Ch., 1997. "Regression and asymptotical location of a multivariate sample," Statistics & Probability Letters, Elsevier, vol. 35(2), pages 173-179, September.
    6. Hashorva, Enkelejd & Jaworski, Piotr, 2012. "Gaussian approximation of conditional elliptical copulas," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 397-407.
    7. Tarpey, Thaddeus, 2000. "Parallel Principal Axes," Journal of Multivariate Analysis, Elsevier, vol. 75(2), pages 295-313, November.
    8. Isaac E. Cortés & Osvaldo Venegas & Héctor W. Gómez, 2022. "A Symmetric/Asymmetric Bimodal Extension Based on the Logistic Distribution: Properties, Simulation and Applications," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    9. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
    10. Preinerstorfer, David & Pötscher, Benedikt M., 2017. "On The Power Of Invariant Tests For Hypotheses On A Covariance Matrix," Econometric Theory, Cambridge University Press, vol. 33(1), pages 1-68, February.
    11. Vidal, Ignacio & Arellano-Valle, Reinaldo B., 2010. "Bayesian inference for dependent elliptical measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2587-2597, November.
    12. Langworthy, Benjamin W. & Stephens, Rebecca L. & Gilmore, John H. & Fine, Jason P., 2021. "Canonical correlation analysis for elliptical copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    13. Cysneiros, Francisco José A. & Paula, Gilberto A. & Galea, Manuel, 2007. "Heteroscedastic symmetrical linear models," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1084-1090, June.
    14. Peng Ding, 2016. "On the Conditional Distribution of the Multivariate Distribution," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 293-295, July.
    15. Mittnik, Stefan, 2014. "VaR-implied tail-correlation matrices," Economics Letters, Elsevier, vol. 122(1), pages 69-73.
    16. Jonathan Raimana Chan & Thomas Huckle & Antoine Jacquier & Aitor Muguruza, 2021. "Portfolio optimisation with options," Papers 2111.12658, arXiv.org, revised Sep 2024.
    17. Viet Anh Nguyen & Soroosh Shafiee & Damir Filipovi'c & Daniel Kuhn, 2021. "Mean-Covariance Robust Risk Measurement," Papers 2112.09959, arXiv.org, revised Nov 2023.
    18. Alexander Bade & Gabriel Frahm & Uwe Jaekel, 2009. "A general approach to Bayesian portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 337-356, October.
    19. Derumigny, A. & Fermanian, J.-D., 2022. "Identifiability and estimation of meta-elliptical copula generators," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    20. P. Bentler, 1983. "Some contributions to efficient statistics in structural models: Specification and estimation of moment structures," Psychometrika, Springer;The Psychometric Society, vol. 48(4), pages 493-517, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.00871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.