IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.01772.html
   My bibliography  Save this paper

Inference for ROC Curves Based on Estimated Predictive Indices

Author

Listed:
  • Yu-Chin Hsu
  • Robert P. Lieli

Abstract

We provide a comprehensive theory of conducting in-sample statistical inference about receiver operating characteristic (ROC) curves that are based on predicted values from a first stage model with estimated parameters (such as a logit regression). The term "in-sample" refers to the practice of using the same data for model estimation (training) and subsequent evaluation, i.e., the construction of the ROC curve. We show that in this case the first stage estimation error has a generally non-negligible impact on the asymptotic distribution of the ROC curve and develop the appropriate pointwise and functional limit theory. We propose methods for simulating the distribution of the limit process and show how to use the results in practice in comparing ROC curves.

Suggested Citation

  • Yu-Chin Hsu & Robert P. Lieli, 2021. "Inference for ROC Curves Based on Estimated Predictive Indices," Papers 2112.01772, arXiv.org.
  • Handle: RePEc:arx:papers:2112.01772
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.01772
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linton, Oliver & Song, Kyungchul & Whang, Yoon-Jae, 2010. "An improved bootstrap test of stochastic dominance," Journal of Econometrics, Elsevier, vol. 154(2), pages 186-202, February.
    2. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    3. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 735-765.
    4. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    5. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    6. Samuel Bazzi & Robert A. Blair & Christopher Blattman & Oeindrila Dube & Matthew Gudgeon & Richard Peck, 2022. "The Promise and Pitfalls of Conflict Prediction: Evidence from Colombia and Indonesia," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 764-779, October.
    7. Stephen G. Donald & Yu-Chin Hsu, 2016. "Improving the Power of Tests of Stochastic Dominance," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 553-585, April.
    8. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    9. Kajal Lahiri & Liu Yang, 2018. "Confidence Bands for ROC Curves With Serially Dependent Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 115-130, January.
    10. Stephen G. Donald & Yu‐Chin Hsu & Garry F. Barrett, 2012. "Incorporating covariates in the measurement of welfare and inequality: methods and applications," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 1-30, February.
    11. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    12. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-247, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kajal Lahiri & Cheng Yang, 2023. "A tale of two recession-derivative indicators," Empirical Economics, Springer, vol. 65(2), pages 925-947, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuang, O-Chia & Kuan, Chung-Ming & Tzeng, Larry Y., 2017. "Testing for central dominance: Method and application," Journal of Econometrics, Elsevier, vol. 196(2), pages 368-378.
    2. Hsu, Yu-Chin & Shen, Shu, 2019. "Testing treatment effect heterogeneity in regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 208(2), pages 468-486.
    3. Yoichi Arai & Yu‐Chin Hsu & Toru Kitagawa & Ismael Mourifié & Yuanyuan Wan, 2022. "Testing identifying assumptions in fuzzy regression discontinuity designs," Quantitative Economics, Econometric Society, vol. 13(1), pages 1-28, January.
    4. Yu‐Chin Hsu & Shu Shen, 2021. "Testing monotonicity of conditional treatment effects under regression discontinuity designs," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(3), pages 346-366, April.
    5. Brendan K. Beare & Jackson D. Clarke, 2022. "Modified Wilcoxon-Mann-Whitney tests of stochastic dominance," Papers 2210.08892, arXiv.org.
    6. repec:cte:werepe:we1138 is not listed on IDEAS
    7. Barrett, Garry F. & Donald, Stephen G. & Hsu, Yu-Chin, 2016. "Consistent tests for poverty dominance relations," Journal of Econometrics, Elsevier, vol. 191(2), pages 360-373.
    8. Toru Kitagawa, 2013. "A bootstrap test for instrument validity in heterogeneous treatment effect models," CeMMAP working papers CWP53/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    10. Jin, Sainan & Corradi, Valentina & Swanson, Norman R., 2017. "Robust Forecast Comparison," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1306-1351, December.
    11. Chang, Chia-Lin & Jiménez-Martín, Juan-Ángel & Maasoumi, Esfandiar & Pérez-Amaral, Teodosio, 2015. "A stochastic dominance approach to financial risk management strategies," Journal of Econometrics, Elsevier, vol. 187(2), pages 472-485.
    12. Chang, Chia-Lin & Jimenez-Martin, Juan-Angel & Maasoumi, Esfandiar & McAleer, Michael & Pérez-Amaral, Teodosio, 2019. "Choosing expected shortfall over VaR in Basel III using stochastic dominance," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 95-113.
    13. Arvanitis, Stelios & Post, Thierry & Potì, Valerio & Karabati, Selcuk, 2021. "Nonparametric tests for Optimal Predictive Ability," International Journal of Forecasting, Elsevier, vol. 37(2), pages 881-898.
    14. Beare, Brendan K. & Shi, Xiaoxia, 2019. "An improved bootstrap test of density ratio ordering," Econometrics and Statistics, Elsevier, vol. 10(C), pages 9-26.
    15. Sun, Zhenting, 2023. "Instrument validity for heterogeneous causal effects," Journal of Econometrics, Elsevier, vol. 237(2).
    16. Lok, Thomas M. & Tabri, Rami V., 2021. "An improved bootstrap test for restricted stochastic dominance," Journal of Econometrics, Elsevier, vol. 224(2), pages 371-393.
    17. Toru Kitagawa, 2013. "A bootstrap test for instrument validity in heterogeneous treatment effect models," CeMMAP working papers 53/13, Institute for Fiscal Studies.
    18. Yu-Chin Hsu & Martin Huber & Ying-Ying Lee & Chu-An Liu, 2021. "Testing Monotonicity of Mean Potential Outcomes in a Continuous Treatment with High-Dimensional Data," Papers 2106.04237, arXiv.org, revised Aug 2022.
    19. Ng, Pin & Wong, Wing-Keung & Xiao, Zhijie, 2017. "Stochastic dominance via quantile regression with applications to investigate arbitrage opportunity and market efficiency," European Journal of Operational Research, Elsevier, vol. 261(2), pages 666-678.
    20. David Lander & David Gunawan & William Griffiths & Duangkamon Chotikapanich, 2020. "Bayesian assessment of Lorenz and stochastic dominance," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 767-799, May.
    21. Qihui Chen & Zheng Fang, 2019. "Inference on Functionals under First Order Degeneracy," Papers 1901.04861, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.01772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.