IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.00526.html
   My bibliography  Save this paper

FinEAS: Financial Embedding Analysis of Sentiment

Author

Listed:
  • Asier Guti'errez-Fandi~no
  • Miquel Noguer i Alonso
  • Petter Kolm
  • Jordi Armengol-Estap'e

Abstract

We introduce a new language representation model in finance called Financial Embedding Analysis of Sentiment (FinEAS). In financial markets, news and investor sentiment are significant drivers of security prices. Thus, leveraging the capabilities of modern NLP approaches for financial sentiment analysis is a crucial component in identifying patterns and trends that are useful for market participants and regulators. In recent years, methods that use transfer learning from large Transformer-based language models like BERT, have achieved state-of-the-art results in text classification tasks, including sentiment analysis using labelled datasets. Researchers have quickly adopted these approaches to financial texts, but best practices in this domain are not well-established. In this work, we propose a new model for financial sentiment analysis based on supervised fine-tuned sentence embeddings from a standard BERT model. We demonstrate our approach achieves significant improvements in comparison to vanilla BERT, LSTM, and FinBERT, a financial domain specific BERT.

Suggested Citation

  • Asier Guti'errez-Fandi~no & Miquel Noguer i Alonso & Petter Kolm & Jordi Armengol-Estap'e, 2021. "FinEAS: Financial Embedding Analysis of Sentiment," Papers 2111.00526, arXiv.org, revised Nov 2021.
  • Handle: RePEc:arx:papers:2111.00526
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.00526
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    2. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    3. Pekka Malo & Ankur Sinha & Pekka Korhonen & Jyrki Wallenius & Pyry Takala, 2014. "Good debt or bad debt: Detecting semantic orientations in economic texts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 782-796, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
    2. Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2022. "Media-expressed tone, option characteristics, and stock return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    3. David M. Goldberg & Nohel Zaman & Arin Brahma & Mariano Aloiso, 2022. "Are mortgage loan closing delay risks predictable? A predictive analysis using text mining on discussion threads," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(3), pages 419-437, March.
    4. Ingrid E. Fisher & Margaret R. Garnsey & Mark E. Hughes, 2016. "Natural Language Processing in Accounting, Auditing and Finance: A Synthesis of the Literature with a Roadmap for Future Research," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(3), pages 157-214, July.
    5. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," LSE Research Online Documents on Economics 122592, London School of Economics and Political Science, LSE Library.
    6. Ankur Sinha & Satishwar Kedas & Rishu Kumar & Pekka Malo, 2022. "SEntFiN 1.0: Entity‐aware sentiment analysis for financial news," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(9), pages 1314-1335, September.
    7. Abdollahi, Hooman & Fjesme, Sturla L. & Sirnes, Espen, 2024. "Measuring market volatility connectedness to media sentiment," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    8. Yi-Hsuan Chen, Cathy & Fengler, Matthias & Härdle, Wolfgang Karl & Liu, Yanchu, 2018. "Textual Sentiment, Option Characteristics, and Stock Return Predictability," Economics Working Paper Series 1808, University of St. Gallen, School of Economics and Political Science.
    9. Jozef Barunik & Cathy Yi-Hsuan Chen & Jan Vecer, 2019. "Sentiment-Driven Stochastic Volatility Model: A High-Frequency Textual Tool for Economists," Papers 1906.00059, arXiv.org.
    10. Wehrheim, Lino, 2021. "The sound of silence: On the (in)visibility of economists in the media," Working Papers 30, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    11. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    12. Yan Luo & Linying Zhou, 2020. "Textual tone in corporate financial disclosures: a survey of the literature," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 17(2), pages 101-110, September.
    13. Jiao Ji & Oleksandr Talavera & Shuxing Yin, 2018. "The Hidden Information Content: Evidence from the Tone of Independent Director Reports," Working Papers 2018-28, Swansea University, School of Management.
    14. Bennani, Hamza, 2018. "Media coverage and ECB policy-making: Evidence from an augmented Taylor rule," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 26-38.
    15. Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).
    16. David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
    17. Leilane de Freitas Rocha Cambara & Roberto Meurer, 2023. "News sentiment and foreign portfolio investment in Brazil," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3332-3348, July.
    18. repec:hal:spmain:info:hdl:2441/3mgbd73vkp9f9oje7utooe7vpg is not listed on IDEAS
    19. Ahmed, Yousry & Elshandidy, Tamer, 2016. "The effect of bidder conservatism on M&A decisions: Text-based evidence from US 10-K filings," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 176-190.
    20. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    21. Liebmann, Michael & Orlov, Alexei G. & Neumann, Dirk, 2016. "The tone of financial news and the perceptions of stock and CDS traders," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 159-175.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.00526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.