IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.02419.html
   My bibliography  Save this paper

Feature Selection by a Mechanism Design

Author

Listed:
  • Xingwei Hu

Abstract

In constructing an econometric or statistical model, we pick relevant features or variables from many candidates. A coalitional game is set up to study the selection problem where the players are the candidates and the payoff function is a performance measurement in all possible modeling scenarios. Thus, in theory, an irrelevant feature is equivalent to a dummy player in the game, which contributes nothing to all modeling situations. The hypothesis test of zero mean contribution is the rule to decide a feature is irrelevant or not. In our mechanism design, the end goal perfectly matches the expected model performance with the expected sum of individual marginal effects. Within a class of noninformative likelihood among all modeling opportunities, the matching equation results in a specific valuation for each feature. After estimating the valuation and its standard deviation, we drop any candidate feature if its valuation is not significantly different from zero. In the simulation studies, our new approach significantly outperforms several popular methods used in practice, and its accuracy is robust to the choice of the payoff function.

Suggested Citation

  • Xingwei Hu, 2021. "Feature Selection by a Mechanism Design," Papers 2110.02419, arXiv.org.
  • Handle: RePEc:arx:papers:2110.02419
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.02419
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.02419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.