IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.00474.html
   My bibliography  Save this paper

The emergence of cooperation from shared goals in the Systemic Sustainability Game of common pool resources

Author

Listed:
  • Chengyi Tu
  • Paolo DOdorico
  • Zhe Li
  • Samir Suweis

Abstract

The sustainable use of common-pool resources (CPRs) is a major environmental governance challenge because of their possible over-exploitation. Research in this field has overlooked the feedback between user decisions and resource dynamics. Here we develop an online game to perform a set of experiments in which users of the same CPR decide on their individual harvesting rates, which in turn depend on the resource dynamics. We show that, if users share common goals, a high level of self-organized cooperation emerges, leading to long-term resource sustainability. Otherwise, selfish/individualistic behaviors lead to resource depletion ("Tragedy of the Commons"). To explain these results, we develop an analytical model of coupled resource-decision dynamics based on optimal control theory and show how this framework reproduces the empirical results.

Suggested Citation

  • Chengyi Tu & Paolo DOdorico & Zhe Li & Samir Suweis, 2021. "The emergence of cooperation from shared goals in the Systemic Sustainability Game of common pool resources," Papers 2110.00474, arXiv.org.
  • Handle: RePEc:arx:papers:2110.00474
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.00474
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    2. Andrew R. Tilman & Joshua B. Plotkin & Erol Akçay, 2020. "Evolutionary games with environmental feedbacks," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Yan, Fang & Hou, Xiaorong & Tian, Tingting & Chen, Xiaojie, 2023. "Nonlinear model reference adaptive control approach for governance of the commons in a feedback-evolving game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Di, Changyan & Zhou, Qingguo & Shen, Jun & Wang, Jinqiang & Zhou, Rui & Wang, Tianyi, 2023. "The coupling effect between the environment and strategies drives the emergence of group cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Maria Kleshnina & Christian Hilbe & Štěpán Šimsa & Krishnendu Chatterjee & Martin A. Nowak, 2023. "The effect of environmental information on evolution of cooperation in stochastic games," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Alternating rotation of coordinated and anti-coordinated action due to environmental feedback and noise," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2023. "Evolution of cooperation with nonlinear environment feedback in repeated public goods game," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    7. Yang, Luhe & Zhang, Lianzhong, 2021. "Environmental feedback in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Chen, Yunong & Belmonte, Andrew & Griffin, Christopher, 2021. "Imitation of success leads to cost of living mediated fairness in the Ultimatum Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    9. Sergio Currarini & Carmen Marchiori & Alessandro Tavoni, 2016. "Network Economics and the Environment: Insights and Perspectives," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(1), pages 159-189, September.
    10. Christian Hilbe & Moshe Hoffman & Martin A. Nowak, 2015. "Cooperate without Looking in a Non-Repeated Game," Games, MDPI, vol. 6(4), pages 1-15, September.
    11. Takuya Sekiguchi, 2023. "Fixation Probabilities of Strategies for Trimatrix Games and Their Applications to Triadic Conflict," Dynamic Games and Applications, Springer, vol. 13(3), pages 1005-1033, September.
    12. Te Wu & Feng Fu & Long Wang, 2011. "Moving Away from Nasty Encounters Enhances Cooperation in Ecological Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    13. Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Migration based on environment comparison promotes cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    14. Konrad, Kai A. & Morath, Florian, 2020. "The Volunteer’s Dilemma in Finite Populations," CEPR Discussion Papers 15536, C.E.P.R. Discussion Papers.
    15. M. Kleshnina & K. Kaveh & K. Chatterjee, 2020. "The role of behavioural plasticity in finite vs infinite populations," Papers 2009.13160, arXiv.org.
    16. Floriana Gargiulo & José J Ramasco, 2012. "Influence of Opinion Dynamics on the Evolution of Games," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    17. Campos, Daniel & Llebot, Josep E. & Méndez, Vicenç, 2008. "Limited resources and evolutionary learning may help to understand the mistimed reproduction in birds caused by climate change," Theoretical Population Biology, Elsevier, vol. 74(1), pages 16-21.
    18. Martina Testori & Hedwig Eisenbarth & Rebecca B Hoyle, 2022. "Selfish risk-seeking can provide an evolutionary advantage in a conditional public goods game," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-18, January.
    19. Huang, Keke & Liu, Yishun & Zhang, Yichi & Yang, Chunhua & Wang, Zhen, 2018. "Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 234-240.
    20. Zhao, Yuntong & Du, Yushen, 2021. "Technical standard competition: An ecosystem-view analysis based on stochastic evolutionary game theory," Technology in Society, Elsevier, vol. 67(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.00474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.