IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2109.07212.html
   My bibliography  Save this paper

Optimising Rolling Stock Planning including Maintenance with Constraint Programming and Quantum Annealing

Author

Listed:
  • Patricia Bickert
  • Cristian Grozea
  • Ronny Hans
  • Matthias Koch
  • Christina Riehn
  • Armin Wolf

Abstract

We propose and compare Constraint Programming (CP) and Quantum Annealing (QA) approaches for rolling stock assignment optimisation considering necessary maintenance tasks. In the CP approach, we model the problem with an Alldifferent constraint, extensions of the Element constraint, and logical implications, among others. For the QA approach, we develop a quadratic unconstrained binary optimisation (QUBO) model. For evaluation, we use data sets based on real data from Deutsche Bahn and run the QA approach on real quantum computers from D-Wave. Classical computers are used to evaluate the CP approach as well as tabu search for the QUBO model. At the current development stage of the physical quantum annealers, we find that both approaches tend to produce comparable results.

Suggested Citation

  • Patricia Bickert & Cristian Grozea & Ronny Hans & Matthias Koch & Christina Riehn & Armin Wolf, 2021. "Optimising Rolling Stock Planning including Maintenance with Constraint Programming and Quantum Annealing," Papers 2109.07212, arXiv.org, revised Sep 2023.
  • Handle: RePEc:arx:papers:2109.07212
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2109.07212
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lusby, Richard M. & Haahr, Jørgen Thorlund & Larsen, Jesper & Pisinger, David, 2017. "A Branch-and-Price algorithm for railway rolling stock rescheduling," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 228-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoogervorst, R. & Dollevoet, T.A.B. & Maróti, G. & Huisman, D., 2018. "Reducing Passenger Delays by Rolling Stock Rescheduling," Econometric Institute Research Papers EI2018-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Chai, Simin & Yin, Jiateng & D’Ariano, Andrea & Liu, Ronghui & Yang, Lixing & Tang, Tao, 2024. "A branch-and-cut algorithm for scheduling train platoons in urban rail networks," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    4. Zhong, Qingwei & Lusby, Richard M. & Larsen, Jesper & Zhang, Yongxiang & Peng, Qiyuan, 2019. "Rolling stock scheduling with maintenance requirements at the Chinese High-Speed Railway," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 24-44.
    5. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    6. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    7. Ralf Borndörfer & Thomas Eßer & Patrick Frankenberger & Andreas Huck & Christoph Jobmann & Boris Krostitz & Karsten Kuchenbecker & Kai Mohrhagen & Philipp Nagl & Michael Peterson & Markus Reuther & Th, 2021. "Deutsche Bahn Schedules Train Rotations Using Hypergraph Optimization," Interfaces, INFORMS, vol. 51(1), pages 42-62, February.
    8. Yang, Lin & Gao, Yuan & D’Ariano, Andrea & Xu, Suxiu, 2024. "Integrated optimization of train timetable and train unit circulation for a Y-type urban rail transit system with flexible train composition mode," Omega, Elsevier, vol. 122(C).
    9. Mark M. Dekker & Rolf N. Lieshout & Robin C. Ball & Paul C. Bouman & Stefan C. Dekker & Henk A. Dijkstra & Rob M. P. Goverde & Dennis Huisman & Debabrata Panja & Alfons A. M. Schaafsma & Marjan Akker, 2022. "A next step in disruption management: combining operations research and complexity science," Public Transport, Springer, vol. 14(1), pages 5-26, March.
    10. Wang, Yihui & Zhao, Kangqi & D’Ariano, Andrea & Niu, Ru & Li, Shukai & Luan, Xiaojie, 2021. "Real-time integrated train rescheduling and rolling stock circulation planning for a metro line under disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 87-117.
    11. Hoogervorst, R. & Dollevoet, T.A.B. & Maróti, G. & Huisman, D., 2019. "A Variable Neighborhood Search Heuristic for Rolling Stock Rescheduling," Econometric Institute Research Papers EI2019-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Niu, Huimin & Zhou, Xuesong & Tian, Xiaopeng, 2018. "Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting Lagrangian decomposition approach for solution symmetry breaking," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 70-101.
    13. Feng, Tao & Lusby, Richard M. & Zhang, Yongxiang & Tao, Siyu & Zhang, Bojian & Peng, Qiyuan, 2024. "A branch-and-price algorithm for integrating urban rail crew scheduling and rostering problems," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2109.07212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.