IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2109.06591.html
   My bibliography  Save this paper

The impact of the COVID-19 pandemic on academic productivity

Author

Listed:
  • Andrew R. Casey
  • Ilya Mandel
  • Prasun K. Ray

Abstract

'Publish or perish' is an expression describing the pressure on academics to consistently publish research to ensure a successful career in academia. With a global pandemic that has changed the world, how has it changed academic productivity? Here we show that academics are posting just as many publications on the arXiv pre-print server as if there were no pandemic: 168,630 were posted in 2020, a +12.6% change from 2019 and $+1.4\sigma$ deviation above the predicted 162,577 $\pm$ 4,393. However, some immediate impacts are visible in individual research fields. Conference cancellations have led to sharp drops in pre-prints, but laboratory closures have had mixed effects. Only some experimental fields show mild declines in outputs, with most being consistent on previous years or even increasing above model expectations. The most significant change is a 50% increase ($+8\sigma$) in quantitative biology research, all related to the COVID-19 pandemic. Some of these publications are by biologists using arXiv for the first time, and some are written by researchers from other fields (e.g., physicists, mathematicians). While quantitative biology pre-prints have returned to pre-pandemic levels, 20% of the research in this field is now focussed on the COVID-19 pandemic, demonstrating a strong shift in research focus.

Suggested Citation

  • Andrew R. Casey & Ilya Mandel & Prasun K. Ray, 2021. "The impact of the COVID-19 pandemic on academic productivity," Papers 2109.06591, arXiv.org.
  • Handle: RePEc:arx:papers:2109.06591
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2109.06591
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Ginsparg, 2011. "ArXiv at 20," Nature, Nature, vol. 476(7359), pages 145-147, August.
    2. Yves Fassin, 2021. "Research on Covid-19: a disruptive phenomenon for bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 5305-5319, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole Shu Ling Yeo-Teh & Bor Luen Tang, 2022. "Sustained Rise in Retractions in the Life Sciences Literature during the Pandemic Years 2020 and 2021," Publications, MDPI, vol. 10(3), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jialiang Lin & Yao Yu & Yu Zhou & Zhiyang Zhou & Xiaodong Shi, 2020. "How many preprints have actually been printed and why: a case study of computer science preprints on arXiv," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 555-574, July.
    2. Wang, Zhiqi & Chen, Yue & Glänzel, Wolfgang, 2020. "Preprints as accelerator of scholarly communication: An empirical analysis in Mathematics," Journal of Informetrics, Elsevier, vol. 14(4).
    3. Philippe Desjardins-Proulx & Ethan P White & Joel J Adamson & Karthik Ram & Timothée Poisot & Dominique Gravel, 2013. "The Case for Open Preprints in Biology," PLOS Biology, Public Library of Science, vol. 11(5), pages 1-5, May.
    4. Adnan Al-Banna & Zaid Ashraf Rana & Mohammed Yaqot & Brenno Menezes, 2023. "Interconnectedness between Supply Chain Resilience, Industry 4.0, and Investment," Logistics, MDPI, vol. 7(3), pages 1-23, August.
    5. Török, Ádám & Konka, Boglárka & Nagy, Andrea Magda, 2023. "A koronavírus-járvány a közgazdasági szakirodalomban. Egy új határterület tudománymetriai elemzése [The coronavirus pandemic in the economics literature. The scientometric analysis of a new discipl," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 284-304.
    6. Yuyan Jiang & Xueli Liu, 2023. "A construction and empirical research of the journal disruption index based on open citation data," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(7), pages 3935-3958, July.
    7. Latefa Ali Dardas & Malik Sallam & Amanda Woodward & Nadia Sweis & Narjes Sweis & Faleh A. Sawair, 2023. "Evaluating Research Impact Based on Semantic Scholar Highly Influential Citations, Total Citations, and Altmetric Attention Scores: The Quest for Refined Measures Remains Illusive," Publications, MDPI, vol. 11(1), pages 1-16, January.
    8. Tanya Araújo & Elsa Fontainha, 2018. "Are scientific memes inherited differently from gendered authorship?," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 953-972, November.
    9. Matthew Cobb, 2017. "The prehistory of biology preprints: A forgotten experiment from the 1960s," PLOS Biology, Public Library of Science, vol. 15(11), pages 1-12, November.
    10. Alice Freiberg & Melanie Schubert & Karla Romero Starke & Janice Hegewald & Andreas Seidler, 2021. "A Rapid Review on the Influence of COVID-19 Lockdown and Quarantine Measures on Modifiable Cardiovascular Risk Factors in the General Population," IJERPH, MDPI, vol. 18(16), pages 1-46, August.
    11. Yujie Zhang & Hongzhen Li & Jingyi Mao & Guoxiu He & Yunhan Yang & Zhuoren Jiang & Yufeng Duan, 2023. "COVID-19: a disruptive impact on the knowledge support of references," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4791-4823, August.
    12. Shuo Xu & Junwan Liu & Dongsheng Zhai & Xin An & Zheng Wang & Hongshen Pang, 2018. "Overlapping thematic structures extraction with mixed-membership stochastic blockmodel," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 61-84, October.
    13. Breno Santana Santos & Ivanovitch Silva & Luciana Lima & Patricia Takako Endo & Gisliany Alves & Marcel da Câmara Ribeiro-Dantas, 2022. "Discovering temporal scientometric knowledge in COVID-19 scholarly production," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1609-1642, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2109.06591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.