IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.10477.html
   My bibliography  Save this paper

Generalized Spatial and Spatiotemporal ARCH Models

Author

Listed:
  • Philipp Otto
  • Wolfgang Schmid

Abstract

In time-series analyses, particularly for finance, generalized autoregressive conditional heteroscedasticity (GARCH) models are widely applied statistical tools for modelling volatility clusters (i.e., periods of increased or decreased risk). In contrast, it has not been considered to be of critical importance until now to model spatial dependence in the conditional second moments. Only a few models have been proposed for modelling local clusters of increased risks. In this paper, we introduce a novel spatial GARCH process in a unified spatial and spatiotemporal GARCH framework, which also covers all previously proposed spatial ARCH models, exponential spatial GARCH, and time-series GARCH models. In contrast to previous spatiotemporal and time series models, this spatial GARCH allows for instantaneous spill-overs across all spatial units. For this common modelling framework, estimators are derived based on a non-linear least-squares approach. Eventually, the use of the model is demonstrated by a Monte Carlo simulation study and by an empirical example that focuses on real estate prices from 1995 to 2014 across the ZIP-Code areas of Berlin. A spatial autoregressive model is applied to the data to illustrate how locally varying model uncertainties (e.g., due to latent regressors) can be captured by the spatial GARCH-type models.

Suggested Citation

  • Philipp Otto & Wolfgang Schmid, 2021. "Generalized Spatial and Spatiotemporal ARCH Models," Papers 2106.10477, arXiv.org.
  • Handle: RePEc:arx:papers:2106.10477
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.10477
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Takaki Sato & Yasumasa Matsuda, 2018. "Spatial GARCH Models," DSSR Discussion Papers 78, Graduate School of Economics and Management, Tohoku University.
    3. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    4. Takaki Sato & Yasumasa Matsuda, 2018. "Spatiotemporal ARCH Models," DSSR Discussion Papers 82, Graduate School of Economics and Management, Tohoku University.
    5. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    6. Gopal K. Basak & Arnab Bhattacharjee & Samarjit Das, 2018. "Causal ordering and inference on acyclic networks," Empirical Economics, Springer, vol. 55(1), pages 213-232, August.
    7. Solmaria Halleck Vega & J. Paul Elhorst, 2015. "The Slx Model," Journal of Regional Science, Wiley Blackwell, vol. 55(3), pages 339-363, June.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp Otto & Wolfgang Schmid, 2023. "A general framework for spatial GARCH models," Statistical Papers, Springer, vol. 64(5), pages 1721-1747, October.
    2. Leopoldo Catania & Anna Gloria Billé, 2017. "Dynamic spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1178-1196, September.
    3. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    4. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    5. Takaki Sato & Yasumasa Matsuda, 2016. "Spatial Autoregressive Conditional Heteroscedasticity Model and Its Application," TERG Discussion Papers 348, Graduate School of Economics and Management, Tohoku University.
    6. Dogan, Osman & Taspinar, Suleyman & Bera, Anil K., 2017. "Simple Tests for Social Interaction Models with Network Structures," MPRA Paper 82828, University Library of Munich, Germany.
    7. Philipp Otto & Wolfgang Schmid & Robert Garthoff, 2021. "Stochastic properties of spatial and spatiotemporal ARCH models," Statistical Papers, Springer, vol. 62(2), pages 623-638, April.
    8. Nikolas Kuschnig, 2022. "Bayesian spatial econometrics: a software architecture," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-25, December.
    9. Philipp Otto, 2022. "A Multivariate Spatial and Spatiotemporal ARCH Model," Papers 2204.12472, arXiv.org.
    10. Raffaella Santolini, 2020. "Spatial effects on local government efficiency," Papers in Regional Science, Wiley Blackwell, vol. 99(1), pages 183-200, February.
    11. Fossen, Frank M. & Martin, Thorsten, 2018. "Entrepreneurial dynamics over space and time," Regional Science and Urban Economics, Elsevier, vol. 70(C), pages 204-214.
    12. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    13. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    14. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    15. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    16. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    17. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    18. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    19. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    20. Chang, Chia-Lin & Hsu, Hui-Kuang, 2013. "Modelling Volatility Size Effects for Firm Performance: The Impact of Chinese Tourists to Taiwan," MPRA Paper 45691, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.10477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.