IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.08097.html
   My bibliography  Save this paper

Reservoir optimization and Machine Learning methods

Author

Listed:
  • Xavier Warin

Abstract

After showing the efficiency of feedforward networks to estimate control in high dimension in the global optimization of some storages problems, we develop a modification of an algorithm based on some dynamic programming principle. We show that classical feedforward networks are not effective to estimate Bellman values for reservoir problems and we propose some neural networks giving far better results. At last, we develop a new algorithm mixing LP resolution and conditional cuts calculated by neural networks to solve some stochastic linear problems.

Suggested Citation

  • Xavier Warin, 2021. "Reservoir optimization and Machine Learning methods," Papers 2106.08097, arXiv.org, revised May 2023.
  • Handle: RePEc:arx:papers:2106.08097
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.08097
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maximilien Germain & Mathieu Laurière & Huyên Pham & Xavier Warin, 2021. "DeepSets and their derivative networks for solving symmetric PDEs ," Working Papers hal-03154116, HAL.
    2. repec:dau:papers:123456789/4273 is not listed on IDEAS
    3. Maximilien Germain & Mathieu Lauri`ere & Huy^en Pham & Xavier Warin, 2021. "DeepSets and their derivative networks for solving symmetric PDEs," Papers 2103.00838, arXiv.org, revised Jan 2022.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
    2. Maximilien Germain & Huy^en Pham & Xavier Warin, 2021. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Papers 2112.11059, arXiv.org, revised Nov 2022.
    3. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Working Papers hal-03498263, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maximilien Germain & Huy^en Pham & Xavier Warin, 2021. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Papers 2112.11059, arXiv.org, revised Nov 2022.
    2. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Working Papers hal-03498263, HAL.
    3. Zhouzhou Gu & Mathieu Lauri`ere & Sebastian Merkel & Jonathan Payne, 2024. "Global Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models," Papers 2406.13726, arXiv.org.
    4. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Neural Optimal Stopping Boundary," Papers 2205.04595, arXiv.org, revised May 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.08097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.