IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.02446.html
   My bibliography  Save this paper

Modeling premiums of non-life insurance companies in India

Author

Listed:
  • Kartik Sethi
  • Siddhartha P. Chakrabarty

Abstract

We undertake an empirical analysis for the premium data of non-life insurance companies operating in India, in the paradigm of fitting the data for the parametric distribution of Lognormal and the extreme value based distributions of Generalized Extreme Value and Generalized Pareto. The best fit to the data for ten companies considered, is obtained for the Generalized Extreme Value distribution.

Suggested Citation

  • Kartik Sethi & Siddhartha P. Chakrabarty, 2021. "Modeling premiums of non-life insurance companies in India," Papers 2106.02446, arXiv.org.
  • Handle: RePEc:arx:papers:2106.02446
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.02446
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sawssen Araichi & Christian de Peretti & Lotfi Belkacem, 2016. "Solvency capital requirement for a temporal dependent losses in insurance," Post-Print hal-02103956, HAL.
    2. Preda, Vasile & Ciumara, Roxana, 2006. "On Composite Models: Weibull-Pareto and Lognormal-Pareto. - A comparative study -," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 3(2), pages 32-46, June.
    3. Ahn, Soohan & Kim, Joseph H.T. & Ramaswami, Vaidyanathan, 2012. "A new class of models for heavy tailed distributions in finance and insurance risk," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 43-52.
    4. Araichi, Sawssen & Peretti, Christian de & Belkacem, Lotfi, 2016. "Solvency capital requirement for a temporal dependent losses in insurance," Economic Modelling, Elsevier, vol. 58(C), pages 588-598.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xuelian & Lin, Panpan & Lin, Jyh-Horng, 2020. "COVID-19, insurer board utility, and capital regulation," Finance Research Letters, Elsevier, vol. 36(C).
    2. Saker Sabkha & Christian Peretti & Dorra Hmaied, 2019. "On the informational market efficiency of the worldwide sovereign credit default swaps," Journal of Asset Management, Palgrave Macmillan, vol. 20(7), pages 581-608, December.
    3. Omer L. Gebizlioglu & Serap Yörübulut, 2016. "A Pseudo-Pareto Distribution and Concomitants of Its Order Statistics," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 1043-1064, December.
    4. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    5. Christian Biener & Martin Eling, 2013. "Recent Research Developments Affecting Nonlife Insurance—The CAS Risk Premium Project 2012 Update," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 16(2), pages 219-231, September.
    6. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    7. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012. "Skew mixture models for loss distributions: A Bayesian approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
    8. Hanieh Panahi, 2016. "Model Selection Test for the Heavy-Tailed Distributions under Censored Samples with Application in Financial Data," IJFS, MDPI, vol. 4(4), pages 1-14, December.
    9. Pavithra, Celeste R. & Deepak, T.G., 2022. "Parameter estimation and computation of the Fisher information matrix for functions of phase type random variables," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    10. Araichi, Sawssen & Peretti, Christian de & Belkacem, Lotfi, 2017. "Reserve modelling and the aggregation of risks using time varying copula models," Economic Modelling, Elsevier, vol. 67(C), pages 149-158.
    11. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    12. Antoine J.‐P. Tixier & Matthew R. Hallowell & Balaji Rajagopalan, 2017. "Construction Safety Risk Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1917-1935, October.
    13. Kim, Joseph H.T. & Kim, Joocheol, 2015. "A parametric alternative to the Hill estimator for heavy-tailed distributions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 60-71.
    14. Tzougas, George & Jeong, Himchan, 2021. "An expectation-maximization algorithm for the exponential-generalized inverse Gaussian regression model with varying dispersion and shape for modelling the aggregate claim amount," LSE Research Online Documents on Economics 108210, London School of Economics and Political Science, LSE Library.
    15. George Tzougas & Himchan Jeong, 2021. "An Expectation-Maximization Algorithm for the Exponential-Generalized Inverse Gaussian Regression Model with Varying Dispersion and Shape for Modelling the Aggregate Claim Amount," Risks, MDPI, vol. 9(1), pages 1-17, January.
    16. Vatamidou, E. & Adan, I.J.B.F. & Vlasiou, M. & Zwart, B., 2013. "Corrected phase-type approximations of heavy-tailed risk models using perturbation analysis," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 366-378.
    17. Farias, Rafael B.A. & Montoril, Michel H. & Andrade, José A.A., 2016. "Bayesian inference for extreme quantiles of heavy tailed distributions," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 103-107.
    18. Tzougas, George & Karlis, Dimitris, 2020. "An EM algorithm for fitting a new class of mixed exponential regression models with varying dispersion," LSE Research Online Documents on Economics 104027, London School of Economics and Political Science, LSE Library.
    19. Park, Myung Hyun & Kim, Joseph H.T., 2016. "Estimating extreme tail risk measures with generalized Pareto distribution," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 91-104.
    20. Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim & Nurulkamal Masseran, 2023. "Three-Part Composite Pareto Modelling for Income Distribution in Malaysia," Mathematics, MDPI, vol. 11(13), pages 1-15, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.02446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.