IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2105.13510.html
   My bibliography  Save this paper

A Note on Optimal Fees for Constant Function Market Makers

Author

Listed:
  • Robin Fritsch
  • Roger Wattenhofer

Abstract

We suggest a framework to determine optimal trading fees for constant function market makers (CFMMs) in order to maximize liquidity provider returns. In a setting of multiple competing liquidity pools, we show that no race to the bottom occurs, but instead pure Nash equilibria of optimal fees exist. We theoretically prove the existence of these equilibria for pools using the constant product trade function used in popular CFMMs like Uniswap. We also numerically compute the equilibria for a number of examples and discuss the effects the equilibrium fees have on capital allocation among pools. Finally, we use our framework to compute optimal fees for real world pools using past trade data.

Suggested Citation

  • Robin Fritsch & Roger Wattenhofer, 2021. "A Note on Optimal Fees for Constant Function Market Makers," Papers 2105.13510, arXiv.org.
  • Handle: RePEc:arx:papers:2105.13510
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2105.13510
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alex Evans & Guillermo Angeris & Tarun Chitra, 2021. "Optimal Fees for Geometric Mean Market Makers," Papers 2104.00446, arXiv.org.
    2. Alex Evans, 2020. "Liquidity Provider Returns in Geometric Mean Markets," Papers 2006.08806, arXiv.org, revised Jul 2020.
    3. Guillermo Angeris & Alex Evans & Tarun Chitra, 2020. "When does the tail wag the dog? Curvature and market making," Papers 2012.08040, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillermo Angeris & Akshay Agrawal & Alex Evans & Tarun Chitra & Stephen Boyd, 2021. "Constant Function Market Makers: Multi-Asset Trades via Convex Optimization," Papers 2107.12484, arXiv.org.
    2. Sam M. Werner & Daniel Perez & Lewis Gudgeon & Ariah Klages-Mundt & Dominik Harz & William J. Knottenbelt, 2021. "SoK: Decentralized Finance (DeFi)," Papers 2101.08778, arXiv.org, revised Sep 2022.
    3. Guillermo Angeris & Alex Evans & Tarun Chitra, 2021. "Replicating Monotonic Payoffs Without Oracles," Papers 2111.13740, arXiv.org.
    4. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
    5. Andrea Barbon & Angelo Ranaldo, 2021. "On The Quality Of Cryptocurrency Markets: Centralized Versus Decentralized Exchanges," Papers 2112.07386, arXiv.org, revised Sep 2024.
    6. Johannes Rude Jensen & Mohsen Pourpouneh & Kurt Nielsen & Omri Ross, 2021. "The Homogenous Properties of Automated Market Makers," Papers 2105.02782, arXiv.org.
    7. Lioba Heimbach & Ye Wang & Roger Wattenhofer, 2021. "Behavior of Liquidity Providers in Decentralized Exchanges," Papers 2105.13822, arXiv.org, revised Oct 2021.
    8. Tobias Bitterli & Fabian Schar, 2023. "Decentralized Exchanges: The Profitability Frontier of Constant Product Market Makers," Papers 2302.05219, arXiv.org, revised Mar 2023.
    9. Lioba Heimbach & Eric Schertenleib & Roger Wattenhofer, 2022. "Risks and Returns of Uniswap V3 Liquidity Providers," Papers 2205.08904, arXiv.org, revised Sep 2022.
    10. Guillermo Angeris & Alex Evans & Tarun Chitra, 2021. "Replicating Market Makers," Papers 2103.14769, arXiv.org.
    11. Neelesh Tiruviluamala & Alexander Port & Erik Lewis, 2022. "A General Framework for Impermanent Loss in Automated Market Makers," Papers 2203.11352, arXiv.org.
    12. Raphael Auer & Bernhard Haslhofer & Stefan Kitzler & Pietro Saggese & Friedhelm Victor, 2024. "The technology of decentralized finance (DeFi)," Digital Finance, Springer, vol. 6(1), pages 55-95, March.
    13. Jiahua Xu & Krzysztof Paruch & Simon Cousaert & Yebo Feng, 2021. "SoK: Decentralized Exchanges (DEX) with Automated Market Maker (AMM) Protocols," Papers 2103.12732, arXiv.org, revised Mar 2023.
    14. Dev Churiwala & Bhaskar Krishnamachari, 2022. "QLAMMP: A Q-Learning Agent for Optimizing Fees on Automated Market Making Protocols," Papers 2211.14977, arXiv.org.
    15. de Andrés, Pablo & Arroyo, David & Correia, Ricardo & Rezola, Alvaro, 2022. "Challenges of the market for initial coin offerings," International Review of Financial Analysis, Elsevier, vol. 79(C).
    16. Nassib Boueri, 2021. "G3M Impermanent Loss Dynamics," Papers 2108.06593, arXiv.org, revised Jun 2022.
    17. Ariah Klages-Mundt & Steffen Schuldenzucker, 2022. "Designing Autonomous Markets for Stablecoin Monetary Policy," Papers 2212.12398, arXiv.org.
    18. Viraj Nadkarni & Sanjeev Kulkarni & Pramod Viswanath, 2024. "Adaptive Curves for Optimally Efficient Market Making," Papers 2406.13794, arXiv.org.
    19. Xue Dong He & Chen Yang & Yutian Zhou, 2024. "Optimal Design of Automated Market Markers on Decentralized Exchanges," Papers 2404.13291, arXiv.org, revised Nov 2024.
    20. Arman Abgaryan & Utkarsh Sharma, 2023. "Dynamic Function Market Maker," Papers 2307.13624, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.13510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.