IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2105.01040.html
   My bibliography  Save this paper

Is More Precise Word of Mouth Better for a High Quality Firm? ... Not Always

Author

Listed:
  • Mohsen Foroughifar
  • David Soberman

Abstract

Consumers often resort to third-party information such as word of mouth, testimonials and reviews to learn more about the quality of a new product. However, it may be difficult for consumers to assess the precision of such information. We use a monopoly setting to investigate how the precision of third-party information and consumers' ability to recognize precision impact firm profits. Conventional wisdom suggests that when a firm is high quality, it should prefer a market where consumers are better at recognizing precise signals. Yet in a broad range of conditions, we show that when the firm is high quality, it is more profitable to sell to consumers who do not recognize precise signals. Given the ability of consumers to assess precision, we show a low quality firm always suffers from more precise information. However, a high quality firm can also suffer from more precise information. The precision range in which a high quality firm gains or suffers from better information depends on how skilled consumers are at recognizing precision.

Suggested Citation

  • Mohsen Foroughifar & David Soberman, 2021. "Is More Precise Word of Mouth Better for a High Quality Firm? ... Not Always," Papers 2105.01040, arXiv.org, revised Apr 2022.
  • Handle: RePEc:arx:papers:2105.01040
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2105.01040
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dina Mayzlin & Jiwoong Shin, 2011. "Uninformative Advertising as an Invitation to Search," Marketing Science, INFORMS, vol. 30(4), pages 666-685, July.
    2. Dirk Bergemann & Stephen Morris, 2019. "Information Design: A Unified Perspective," Journal of Economic Literature, American Economic Association, vol. 57(1), pages 44-95, March.
    3. Yi Zhao & Sha Yang & Vishal Narayan & Ying Zhao, 2013. "Modeling Consumer Learning from Online Product Reviews," Marketing Science, INFORMS, vol. 32(1), pages 153-169, May.
    4. Dmitri Kuksov & Yuanfang Lin, 2010. "Information Provision in a Vertically Differentiated Competitive Marketplace," Marketing Science, INFORMS, vol. 29(1), pages 122-138, 01-02.
    5. Yiangos Papanastasiou & Nicos Savva, 2017. "Dynamic Pricing in the Presence of Social Learning and Strategic Consumers," Management Science, INFORMS, vol. 63(4), pages 919-939, April.
    6. Emir Kamenica & Matthew Gentzkow, 2011. "Bayesian Persuasion," American Economic Review, American Economic Association, vol. 101(6), pages 2590-2615, October.
    7. Yubo Chen & Jinhong Xie, 2005. "Third-Party Product Review and Firm Marketing Strategy," Marketing Science, INFORMS, vol. 24(2), pages 218-240, February.
    8. Milgrom, Paul & Roberts, John, 1986. "Price and Advertising Signals of Product Quality," Journal of Political Economy, University of Chicago Press, vol. 94(4), pages 796-821, August.
    9. Dirk Bergemann & Juuso Valimaki, 1997. "Market Diffusion with Two-Sided Learning," RAND Journal of Economics, The RAND Corporation, vol. 28(4), pages 773-795, Winter.
    10. Zheyin (Jane) Gu & Ying Xie, 2013. "Facilitating Fit Revelation in the Competitive Market," Management Science, INFORMS, vol. 59(5), pages 1196-1212, May.
    11. In-Koo Cho & David M. Kreps, 1987. "Signaling Games and Stable Equilibria," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(2), pages 179-221.
    12. Subir Bose & Gerhard Orosel & Marco Ottaviani & Lise Vesterlund, 2008. "Monopoly pricing in the binary herding model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(2), pages 203-241, November.
    13. Lewis, Tracy R & Sappington, David E M, 1994. "Supplying Information to Facilitate Price Discrimination," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(2), pages 309-327, May.
    14. Yubo Chen & Jinhong Xie, 2008. "Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix," Management Science, INFORMS, vol. 54(3), pages 477-491, March.
    15. Fernando Branco & Monic Sun & J. Miguel Villas-Boas, 2016. "Too Much Information? Information Provision and Search Costs," Marketing Science, INFORMS, vol. 35(4), pages 605-618, July.
    16. Dina Mayzlin, 2006. "Promotional Chat on the Internet," Marketing Science, INFORMS, vol. 25(2), pages 155-163, 03-04.
    17. Justin P. Johnson & David P. Myatt, 2006. "On the Simple Economics of Advertising, Marketing, and Product Design," American Economic Review, American Economic Association, vol. 96(3), pages 756-784, June.
    18. Dmitri Kuksov & Ying Xie, 2010. "Pricing, Frills, and Customer Ratings," Marketing Science, INFORMS, vol. 29(5), pages 925-943, 09-10.
    19. Juan-JosÈ Ganuza & JosÈ S. Penalva, 2010. "Signal Orderings Based on Dispersion and the Supply of Private Information in Auctions," Econometrica, Econometric Society, vol. 78(3), pages 1007-1030, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Archishman Chakraborty & Rick Harbaugh, 2014. "Persuasive Puffery," Marketing Science, INFORMS, vol. 33(3), pages 382-400, May.
      • Archishman Chakraborty & Rick Harbaugh, 2012. "Persuasive Puffery," Working Papers 2012-05, Indiana University, Kelley School of Business, Department of Business Economics and Public Policy.
    2. Yogesh V. Joshi & Andres Musalem, 2021. "When Consumers Learn, Money Burns: Signaling Quality via Advertising with Observational Learning and Word of Mouth," Marketing Science, INFORMS, vol. 40(1), pages 168-188, January.
    3. Caldieraro, Fabio & Cunha, Marcus, 2022. "Consumers’ response to weak unique selling propositions: Implications for optimal product recommendation strategy," International Journal of Research in Marketing, Elsevier, vol. 39(3), pages 724-744.
    4. Young Kwark & Jianqing Chen & Srinivasan Raghunathan, 2014. "Online Product Reviews: Implications for Retailers and Competing Manufacturers," Information Systems Research, INFORMS, vol. 25(1), pages 93-110, March.
    5. Upender Subramanian & Ram C. Rao, 2016. "Leveraging Experienced Consumers to Attract New Consumers: An Equilibrium Analysis of Displaying Deal Sales by Daily Deal Websites," Management Science, INFORMS, vol. 62(12), pages 3555-3575, December.
    6. Dmitri Kuksov & Chenxi Liao, 2019. "Opinion Leaders and Product Variety," Marketing Science, INFORMS, vol. 38(5), pages 812-834, September.
    7. Carla Guadalupi, 2018. "Learning quality through prices and word‐of‐mouth communication," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 27(1), pages 53-70, March.
    8. Yuanfang Lin & Amit Pazgal, 2016. "Hide Supremacy or Admit Inferiority—Market Entry Strategies in Response to Consumer Informational Needs," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 3(2), pages 94-103, June.
    9. Salvatore Piccolo & Piero Tedeschi & Giovanni Ursino, 2018. "Deceptive Advertising with Rational Buyers," Management Science, INFORMS, vol. 64(3), pages 1291-1310, March.
    10. Zheyin (Jane) Gu & Ying Xie, 2013. "Facilitating Fit Revelation in the Competitive Market," Management Science, INFORMS, vol. 59(5), pages 1196-1212, May.
    11. Raphael Boleslavsky & Christopher S. Cotton & Haresh Gurnani, 2017. "Demonstrations and Price Competition in New Product Release," Management Science, INFORMS, vol. 63(6), pages 2016-2026, June.
    12. Liang Guo & Yue Wu, 2016. "Consumer deliberation and quality signaling," Quantitative Marketing and Economics (QME), Springer, vol. 14(3), pages 233-269, September.
    13. Zhang, Tao & Li, Gang & Lai, Kin Keung & Leung, John W.K., 2018. "Information disclosure strategies for the intermediary and competitive sellers," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1156-1173.
    14. Tingting Nian & Arun Sundararajan, 2022. "Social Media Marketing, Quality Signaling, and the Goldilocks Principle," Information Systems Research, INFORMS, vol. 33(2), pages 540-556, June.
    15. Xu Guan & Yulan Wang & Zelong Yi & Ying‐Ju Chen, 2020. "Inducing Consumer Online Reviews Via Disclosure," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1956-1971, August.
    16. Monic Sun, 2012. "How Does the Variance of Product Ratings Matter?," Management Science, INFORMS, vol. 58(4), pages 696-707, April.
    17. Liang Guo, 2020. "Upstream Exploitation and Strategic Disclosure," Marketing Science, INFORMS, vol. 39(5), pages 923-938, September.
    18. David Godes, 2012. "The Strategic Impact of References in Business Markets," Marketing Science, INFORMS, vol. 31(2), pages 257-276, March.
    19. Li Yimeng & Franco Mariuzzo & Nikolaos Korfiatis & Yu Xiong, 2017. "Information Strategies of new Product Introduction in Vertical Markets," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2017-03, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    20. Cui Zhao & Xiaoshuai Peng & Zhendong Li, 2023. "The influence of online customer reviews on two-stage product strategy in a competitive market," Annals of Operations Research, Springer, vol. 326(1), pages 411-503, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.01040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.