IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2104.14662.html
   My bibliography  Save this paper

Dynamic Population Games: A Tractable Intersection of Mean-Field Games and Population Games

Author

Listed:
  • Ezzat Elokda
  • Saverio Bolognani
  • Andrea Censi
  • Florian Dorfler
  • Emilio Frazzoli

Abstract

In many real-world large-scale decision problems, self-interested agents have individual dynamics and optimize their own long-term payoffs. Important examples include the competitive access to shared resources (e.g., roads, energy, or bandwidth) but also non-engineering domains like epidemic propagation and control. These problems are natural to model as mean-field games. Existing mathematical formulations of mean field games have had limited applicability in practice, since they require solving non-standard initial-terminal-value problems that are tractable only in limited special cases. In this letter, we propose a novel formulation, along with computational tools, for a practically relevant class of Dynamic Population Games (DPGs), which correspond to discrete-time, finite-state-and-action, stationary mean-field games. Our main contribution is a mathematical reduction of Stationary Nash Equilibria (SNE) in DPGs to standard Nash Equilibria (NE) in static population games. This reduction is leveraged to guarantee the existence of a SNE, develop an evolutionary dynamics-based SNE computation algorithm, and derive simple conditions that guarantee stability and uniqueness of the SNE. We provide two examples of applications: fair resource allocation with heterogeneous agents and control of epidemic propagation. Open source software for SNE computation: https://gitlab.ethz.ch/elokdae/dynamic-population-games

Suggested Citation

  • Ezzat Elokda & Saverio Bolognani & Andrea Censi & Florian Dorfler & Emilio Frazzoli, 2021. "Dynamic Population Games: A Tractable Intersection of Mean-Field Games and Population Games," Papers 2104.14662, arXiv.org, revised Jun 2024.
  • Handle: RePEc:arx:papers:2104.14662
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2104.14662
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bergin, James & Bernhardt, Dan, 1992. "Anonymous sequential games with aggregate uncertainty," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 543-562.
    2. Doraszelski, Ulrich & Pakes, Ariel, 2007. "A Framework for Applied Dynamic Analysis in IO," Handbook of Industrial Organization, in: Mark Armstrong & Robert Porter (ed.), Handbook of Industrial Organization, edition 1, volume 3, chapter 30, pages 1887-1966, Elsevier.
    3. Bergin, J & Bernhardt, D, 1995. "Anonymous Sequential Games: Existence and Characterization of Equilibria," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(3), pages 461-489, May.
    4. Jovanovic, Boyan & Rosenthal, Robert W., 1988. "Anonymous sequential games," Journal of Mathematical Economics, Elsevier, vol. 17(1), pages 77-87, February.
    5. Berenice Anne Neumann, 2020. "Stationary Equilibria of Mean Field Games with Finite State and Action Space," Dynamic Games and Applications, Springer, vol. 10(4), pages 845-871, December.
    6. Ilaria Brunetti & Yezekael Hayel & Eitan Altman, 2018. "State-Policy Dynamics in Evolutionary Games," Dynamic Games and Applications, Springer, vol. 8(1), pages 93-116, March.
    7. János Flesch & Thiruvenkatachari Parthasarathy & Frank Thuijsman & Philippe Uyttendaele, 2013. "Evolutionary Stochastic Games," Dynamic Games and Applications, Springer, vol. 3(2), pages 207-219, June.
    8. Adlakha, Sachin & Johari, Ramesh & Weintraub, Gabriel Y., 2015. "Equilibria of dynamic games with many players: Existence, approximation, and market structure," Journal of Economic Theory, Elsevier, vol. 156(C), pages 269-316.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Light, Bar & Weintraub, Gabriel, 2018. "Mean Field Equilibrium: Uniqueness, Existence, and Comparative Statics," Research Papers 3731, Stanford University, Graduate School of Business.
    2. Flavio Toxvaerd & Chryssi Giannitsarou, 2004. "Recursive global games," Money Macro and Finance (MMF) Research Group Conference 2003 104, Money Macro and Finance Research Group.
    3. Balbus, Lukasz & Dziewulski, Pawel & Reffett, Kevin & Wozny, Lukasz, 2022. "Markov distributional equilibrium dynamics in games with complementarities and no aggregate risk," Theoretical Economics, Econometric Society, vol. 17(2), May.
    4. Chakrabarti, Subir K., 2003. "Pure strategy Markov equilibrium in stochastic games with a continuum of players," Journal of Mathematical Economics, Elsevier, vol. 39(7), pages 693-724, September.
    5. James Bergin, 1999. "On the continuity of correspondences on sets of measures with restricted marginals," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 13(2), pages 471-481.
    6. Adlakha, Sachin & Johari, Ramesh & Weintraub, Gabriel Y., 2015. "Equilibria of dynamic games with many players: Existence, approximation, and market structure," Journal of Economic Theory, Elsevier, vol. 156(C), pages 269-316.
    7. Sachin Adlakha & Ramesh Johari, 2013. "Mean Field Equilibrium in Dynamic Games with Strategic Complementarities," Operations Research, INFORMS, vol. 61(4), pages 971-989, August.
    8. Piotr Więcek & Eitan Altman, 2015. "Stationary Anonymous Sequential Games with Undiscounted Rewards," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 686-710, August.
    9. Piotr Więcek, 2024. "Multiple-Population Discrete-Time Mean Field Games with Discounted and Total Payoffs: The Existence of Equilibria," Dynamic Games and Applications, Springer, vol. 14(4), pages 997-1026, September.
    10. Miao, Jianjun, 2006. "Competitive equilibria of economies with a continuum of consumers and aggregate shocks," Journal of Economic Theory, Elsevier, vol. 128(1), pages 274-298, May.
    11. Piotr Więcek, 2020. "Discrete-Time Ergodic Mean-Field Games with Average Reward on Compact Spaces," Dynamic Games and Applications, Springer, vol. 10(1), pages 222-256, March.
    12. Ashish R. Hota & Urmee Maitra & Ezzat Elokda & Saverio Bolognani, 2023. "Learning to Mitigate Epidemic Risks: A Dynamic Population Game Approach," Dynamic Games and Applications, Springer, vol. 13(4), pages 1106-1129, December.
    13. Piotr Więcek, 2017. "Total Reward Semi-Markov Mean-Field Games with Complementarity Properties," Dynamic Games and Applications, Springer, vol. 7(3), pages 507-529, September.
    14. Aïd, René & Basei, Matteo & Ferrari, Giorgio, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Center for Mathematical Economics Working Papers 679, Center for Mathematical Economics, Bielefeld University.
    15. Dianetti, Jodi & Ferrari, Giorgio & Tzouanas, Ioannis, 2023. "Ergodic Mean-Field Games of Singular Control with Regime-Switching (extended version)," Center for Mathematical Economics Working Papers 681, Center for Mathematical Economics, Bielefeld University.
    16. Naci Saldi & Tamer Başar & Maxim Raginsky, 2019. "Approximate Nash Equilibria in Partially Observed Stochastic Games with Mean-Field Interactions," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1006-1033, August.
    17. Ren'e Aid & Matteo Basei & Giorgio Ferrari, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Papers 2305.00541, arXiv.org.
    18. John Duggan, 2012. "Noisy Stochastic Games," RCER Working Papers 570, University of Rochester - Center for Economic Research (RCER).
    19. Bergin, James, 2018. "Patent policy, investment and social welfare," International Journal of Industrial Organization, Elsevier, vol. 61(C), pages 439-458.
    20. James Bergin & Dan Bernhardt, 2008. "Industry dynamics with stochastic demand," RAND Journal of Economics, RAND Corporation, vol. 39(1), pages 41-68, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2104.14662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.