IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.00395.html
   My bibliography  Save this paper

Scale matters: The daily, weekly and monthly volatility and predictability of Bitcoin, Gold, and the S&P 500

Author

Listed:
  • Nassim Dehouche

Abstract

A reputation of high volatility accompanies the emergence of Bitcoin as a financial asset. This paper intends to nuance this reputation and clarify our understanding of Bitcoin's volatility. Using daily, weekly, and monthly closing prices and log-returns data going from September 2014 to January 2021, we find that Bitcoin is a prime example of an asset for which the two conceptions of volatility diverge. We show that, historically, Bitcoin allies both high volatility (high Standard Deviation) and high predictability (low Approximate Entropy), relative to Gold and S&P 500. Moreover, using tools from Extreme Value Theory, we analyze the convergence of moments, and the mean excess functions of both the closing prices and the log-returns of the three assets. We find that the closing price of Bitcoin is consistent with a generalized Pareto distribution, when the closing prices of the two other assets (Gold and S&P 500) present thin-tailed distributions. However, returns for all three assets are heavy tailed and second moments (variance, standard deviation) non-convergent. In the case of Bitcoin, lower sampling frequencies (monthly vs weekly, weekly vs daily) drastically reduce the Kurtosis of log-returns and increase the convergence of empirical moments to their true value. The opposite effect is observed for Gold and S&P 500. These properties suggest that Bitcoin's volatility is essentially an intra-day and intra-week phenomenon that is strongly attenuated on a weekly time-scale, and make it an attractive store of value to investors and speculators, but its high standard deviation excludes its use a currency.

Suggested Citation

  • Nassim Dehouche, 2021. "Scale matters: The daily, weekly and monthly volatility and predictability of Bitcoin, Gold, and the S&P 500," Papers 2103.00395, arXiv.org.
  • Handle: RePEc:arx:papers:2103.00395
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.00395
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    2. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    3. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    4. Y. Malevergne & V. Pisarenko & D. Sornette, 2005. "Empirical distributions of stock returns: between the stretched exponential and the power law?," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 379-401.
    5. Marco Bonetti & Pasquale Cirillo & Paola Musile Tanzi & Elisabetta Trinchero, 2016. "An Analysis of the Number of Medical Malpractice Claims and Their Amounts," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-30, April.
    6. Ghosh, Souvik & Resnick, Sidney, 2010. "A discussion on mean excess plots," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1492-1517, August.
    7. Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
    8. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    2. Yi, Eojin & Ahn, Kwangwon & Choi, M.Y., 2022. "Cryptocurrency: Not far from equilibrium," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    3. ORĂȘTEAN Ramona & MĂRGINEAN Silvia Cristina & SAVA Raluca, 2019. "Bitcoin In The Scientific Literature – A Bibliometric Study," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(3), pages 160-174, December.
    4. Kumar, Anoop S. & Anandarao, S., 2019. "Volatility spillover in crypto-currency markets: Some evidences from GARCH and wavelet analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 448-458.
    5. Beatriz Vaz de Melo Mendes & André Fluminense Carneiro, 2020. "A Comprehensive Statistical Analysis of the Six Major Crypto-Currencies from August 2015 through June 2020," JRFM, MDPI, vol. 13(9), pages 1-21, August.
    6. Celeste, Valerio & Corbet, Shaen & Gurdgiev, Constantin, 2020. "Fractal dynamics and wavelet analysis: Deep volatility and return properties of Bitcoin, Ethereum and Ripple," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 310-324.
    7. Merediz-Solà, Ignasi & Bariviera, Aurelio F., 2019. "A bibliometric analysis of bitcoin scientific production," Research in International Business and Finance, Elsevier, vol. 50(C), pages 294-305.
    8. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    9. Matkovskyy, Roman & Jalan, Akanksha, 2019. "From financial markets to Bitcoin markets: A fresh look at the contagion effect," Finance Research Letters, Elsevier, vol. 31(C), pages 93-97.
    10. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    11. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    12. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    13. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    14. Riska Dwi, Astuti & Nadia, Fazira, 2018. "The Effect of Cryptocurrency on Exchange Rate of China: Case Study of Bitcoin," MPRA Paper 93052, University Library of Munich, Germany, revised 01 Apr 2019.
    15. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    16. Kosc, Krzysztof & Sakowski, Paweł & Ślepaczuk, Robert, 2019. "Momentum and contrarian effects on the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 691-701.
    17. Mtiraoui, Amine & Boubaker, Heni & BelKacem, Lotfi, 2023. "A hybrid approach for forecasting bitcoin series," Research in International Business and Finance, Elsevier, vol. 66(C).
    18. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    19. Alves, P.R.L., 2020. "Dynamic characteristic of Bitcoin cryptocurrency in the reconstruction scheme," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    20. Katsiampa, Paraskevi & Corbet, Shaen & Lucey, Brian, 2019. "Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis," Finance Research Letters, Elsevier, vol. 29(C), pages 68-74.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.00395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.