IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2102.03038.html
   My bibliography  Save this paper

Bounds and Heuristics for Multi-Product Personalized Pricing

Author

Listed:
  • Guillermo Gallego
  • Gerardo Berbeglia

Abstract

We present tight bounds and heuristics for personalized, multi-product pricing problems. Under mild conditions we show that the best price in the direction of a positive vector results in profits that are guaranteed to be at least as large as a fraction of the profits from optimal personalized pricing. For unconstrained problems, the fraction depends on the factor and on optimal price vectors for the different customer types. For constrained problems the factor depends on the factor and a ratio of the constraints. Using a factor vector with equal components results in uniform pricing and has exceedingly mild sufficient conditions for the bound to hold. A robust factor is presented that achieves the best possible performance guarantee. As an application, our model yields a tight lower-bound on the performance of linear pricing relative to optimal personalized non-linear pricing, and suggests effective non-linear price heuristics relative to personalized solutions. Additionally, our model provides guarantees for simple strategies such as bundle-size pricing and component-pricing with respect to optimal personalized mixed bundle pricing. Heuristics to cluster customer types are also developed with the goal of improving performance by allowing each cluster to price along its own factor. Numerical results are presented for a variety of demand models that illustrate the tradeoffs between using the economic factor and the robust factor for each cluster, as well as the tradeoffs between using a clustering heuristic with a worst case performance of two and a machine learning clustering algorithm. In our experiments economically motivated factors coupled with machine learning clustering heuristics performed best.

Suggested Citation

  • Guillermo Gallego & Gerardo Berbeglia, 2021. "Bounds and Heuristics for Multi-Product Personalized Pricing," Papers 2102.03038, arXiv.org, revised Feb 2021.
  • Handle: RePEc:arx:papers:2102.03038
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2102.03038
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven Berry & Amit Gandhi & Philip Haile, 2013. "Connected Substitutes and Invertibility of Demand," Econometrica, Econometric Society, vol. 81(5), pages 2087-2111, September.
    2. Dirk Bergemann & Francisco Castro & Gabriel Weintraub, 2019. "Uniform Pricing Versus Third-Degree Price Discrimination," Cowles Foundation Discussion Papers 2213r, Cowles Foundation for Research in Economics, Yale University, revised Feb 2020.
    3. Malueg, David A. & Snyder, Christopher M., 2006. "Bounding the relative profitability of price discrimination," International Journal of Industrial Organization, Elsevier, vol. 24(5), pages 995-1011, September.
    4. Paat Rusmevichientong & Benjamin Van Roy & Peter W. Glynn, 2006. "A Nonparametric Approach to Multiproduct Pricing," Operations Research, INFORMS, vol. 54(1), pages 82-98, February.
    5. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillermo Gallego & Gerardo Berbeglia, 2021. "The Limits of Personalization in Assortment Optimization," Papers 2109.14861, arXiv.org, revised Jun 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillermo Gallego & Gerardo Berbeglia, 2024. "Bounds and Heuristics for Multiproduct Pricing," Management Science, INFORMS, vol. 70(6), pages 4132-4144, June.
    2. Srikanth Jagabathula & Paat Rusmevichientong, 2017. "Nonparametric Joint Assortment and Price Choice Model," Management Science, INFORMS, vol. 63(9), pages 3128-3145, September.
    3. Ariel Pakes & Jack Porter, 2024. "Moment inequalities for multinomial choice with fixed effects," Quantitative Economics, Econometric Society, vol. 15(1), pages 1-25, January.
    4. Yuichi Kitamura & Jörg Stoye, 2013. "Nonparametric analysis of random utility models: testing," CeMMAP working papers 36/13, Institute for Fiscal Studies.
    5. Flores, Alvaro & Berbeglia, Gerardo & Van Hentenryck, Pascal, 2019. "Assortment optimization under the Sequential Multinomial Logit Model," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1052-1064.
    6. Peter Leopold S. Bergman & Eric W. Chan & Adam Kapor, 2020. "Housing Search Frictions: Evidence from Detailed Search Data and a Field Experiment," CESifo Working Paper Series 8080, CESifo.
    7. Liang Chen & Eugene Choo & Alfred Galichon & Simon Weber, 2023. "Existence of a Competitive Equilibrium with Substitutes, with Applications to Matching and Discrete Choice Models," Papers 2309.11416, arXiv.org.
    8. Dunker, Fabian & Hoderlein, Stefan & Kaido, Hiroaki, 2014. "Nonparametric Identification of Endogenous and Heterogeneous Aggregate Demand Models: Complements, Bundles and the Market Level," Economics Series 307, Institute for Advanced Studies.
    9. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    10. Jalali, Hamed & Carmen, Raïsa & Van Nieuwenhuyse, Inneke & Boute, Robert, 2019. "Quality and pricing decisions in production/inventory systems," European Journal of Operational Research, Elsevier, vol. 272(1), pages 195-206.
    11. Morris M. Kleiner & Evan J. Soltas, 2019. "A Welfare Analysis of Occupational Licensing in U.S. States," NBER Working Papers 26383, National Bureau of Economic Research, Inc.
    12. Steven T. Berry & Philip A. Haile, 2024. "Nonparametric Identification of Differentiated Products Demand Using Micro Data," Econometrica, Econometric Society, vol. 92(4), pages 1135-1162, July.
    13. Miravete, Eugenio & Seim, Katja & Thurk, Jeff, 2013. "Complexity, Efficiency, and Fairness of Multi-Product Monopoly Pricing," CEPR Discussion Papers 9641, C.E.P.R. Discussion Papers.
    14. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    15. Fabian Dunker, 2015. "Adaptive estimation for some nonparametric instrumental variable models," Papers 1511.03977, arXiv.org, revised Aug 2021.
    16. Zhenzhen Yan & Karthik Natarajan & Chung Piaw Teo & Cong Cheng, 2022. "A Representative Consumer Model in Data-Driven Multiproduct Pricing Optimization," Management Science, INFORMS, vol. 68(8), pages 5798-5827, August.
    17. Odran Bonnet & Alfred Galichon & Yu-Wei Hsieh & Keith O’Hara & Matt Shum, 2022. "Yogurts Choose Consumers? Estimation of Random-Utility Models via Two-Sided Matching," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(6), pages 3085-3114.
    18. Ruxian Wang & Zizhuo Wang, 2017. "Consumer Choice Models with Endogenous Network Effects," Management Science, INFORMS, vol. 63(11), pages 3944-3960, November.
    19. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    20. Hyungsik Roger Moon & Matthew Shum & Martin Weidner, 2017. "Estimation of random coefficients logit demand models with interactive fixed effects," CeMMAP working papers 12/17, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.03038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.