IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2102.01980.html
   My bibliography  Save this paper

A deep learning model for gas storage optimization

Author

Listed:
  • Nicolas Curin
  • Michael Kettler
  • Xi Kleisinger-Yu
  • Vlatka Komaric
  • Thomas Krabichler
  • Josef Teichmann
  • Hanna Wutte

Abstract

To the best of our knowledge, the application of deep learning in the field of quantitative risk management is still a relatively recent phenomenon. In this article, we utilize techniques inspired by reinforcement learning in order to optimize the operation plans of underground natural gas storage facilities. We provide a theoretical framework and assess the performance of the proposed method numerically in comparison to a state-of-the-art least-squares Monte-Carlo approach. Due to the inherent intricacy originating from the high-dimensional forward market as well as the numerous constraints and frictions, the optimization exercise can hardly be tackled by means of traditional techniques.

Suggested Citation

  • Nicolas Curin & Michael Kettler & Xi Kleisinger-Yu & Vlatka Komaric & Thomas Krabichler & Josef Teichmann & Hanna Wutte, 2021. "A deep learning model for gas storage optimization," Papers 2102.01980, arXiv.org, revised Mar 2021.
  • Handle: RePEc:arx:papers:2102.01980
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2102.01980
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matt Thompson & Matt Davison & Henning Rasmussen, 2009. "Natural gas storage valuation and optimization: A real options application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 226-238, April.
    2. Thompson, Matt, 2016. "Natural gas storage valuation, optimization, market and credit risk management," Journal of Commodity Markets, Elsevier, vol. 2(1), pages 26-44.
    3. Petter Bjerksund & Gunnar Stensland & Frank Vagstad, 2011. "Gas Storage Valuation: Price Modelling v. Optimization Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 203-228.
    4. Patrick Hénaff & Ismail Laachir & Francesco Russo, 2018. "Gas Storage Valuation and Hedging: A Quantification of Model Risk," IJFS, MDPI, vol. 6(1), pages 1-27, March.
    5. Rene Carmona & Michael Ludkovski, 2010. "Valuation of energy storage: an optimal switching approach," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 359-374.
    6. Roberto Daluiso & Emanuele Nastasi & Andrea Pallavicini & Giulio Sartorelli, 2020. "Pricing commodity swing options," Papers 2001.08906, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vo Thanh, Hung & Zamanyad, Aiyoub & Safaei-Farouji, Majid & Ashraf, Umar & Hemeng, Zhang, 2022. "Application of hybrid artificial intelligent models to predict deliverability of underground natural gas storage sites," Renewable Energy, Elsevier, vol. 200(C), pages 169-184.
    2. Tapio Behrndt & Ren-Raw Chen, 2022. "A New Look at the Swing Contract: From Linear Programming to Particle Swarm Optimization," JRFM, MDPI, vol. 15(6), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Curin & Michael Kettler & Xi Kleisinger-Yu & Vlatka Komaric & Thomas Krabichler & Josef Teichmann & Hanna Wutte, 2021. "A deep learning model for gas storage optimization," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1021-1037, December.
    2. Nemat Safarov & Colin Atkinson, 2016. "Natural gas-fired power plants valuation and optimisation under Levy copulas and regime-switching," Papers 1607.01207, arXiv.org, revised Jul 2016.
    3. Löhndorf, Nils & Wozabal, David, 2021. "Gas storage valuation in incomplete markets," European Journal of Operational Research, Elsevier, vol. 288(1), pages 318-330.
    4. Nicola Secomandi & Guoming Lai & François Margot & Alan Scheller-Wolf & Duane J. Seppi, 2015. "Merchant Commodity Storage and Term-Structure Model Error," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 302-320, July.
    5. Nicola Secomandi, 2015. "Merchant Commodity Storage Practice Revisited," Operations Research, INFORMS, vol. 63(5), pages 1131-1143, October.
    6. Nemat Safarov & Colin Atkinson, 2017. "Natural Gas-Fired Power Plants Valuation And Optimization Under Lévy Copulas And Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-38, February.
    7. Bastian Felix, 2012. "Gas Storage Valuation: A Comparative Simulation Study," EWL Working Papers 1201, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Apr 2014.
    8. Felix, Bastian Joachim & Weber, Christoph, 2012. "Gas storage valuation applying numerically constructed recombining trees," European Journal of Operational Research, Elsevier, vol. 216(1), pages 178-187.
    9. Guoming Lai & Mulan X. Wang & Sunder Kekre & Alan Scheller-Wolf & Nicola Secomandi, 2011. "Valuation of Storage at a Liquefied Natural Gas Terminal," Operations Research, INFORMS, vol. 59(3), pages 602-616, June.
    10. Daniel R. Jiang & Warren B. Powell, 2015. "Optimal Hour-Ahead Bidding in the Real-Time Electricity Market with Battery Storage Using Approximate Dynamic Programming," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 525-543, August.
    11. Secomandi, Nicola, 2016. "A tutorial on portfolio-based control algorithms for merchant energy trading operations," Journal of Commodity Markets, Elsevier, vol. 4(1), pages 1-13.
    12. Michael Ludkovski & Aditya Maheshwari, 2018. "Simulation Methods for Stochastic Storage Problems: A Statistical Learning Perspective," Papers 1803.11309, arXiv.org.
    13. Cummins, Mark & Kiely, Greg & Murphy, Bernard, 2018. "Gas storage valuation under multifactor Lévy processes," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 167-184.
    14. Alessio Trivella & Selvaprabu Nadarajah & Stein-Erik Fleten & Denis Mazieres & David Pisinger, 2021. "Managing Shutdown Decisions in Merchant Commodity and Energy Production: A Social Commerce Perspective," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 311-330, March.
    15. Mason, Charles F. & Wilmot, Neil A., 2020. "Jumps in the convenience yield of crude oil," Resource and Energy Economics, Elsevier, vol. 60(C).
    16. Szabó, Dávid Zoltán & Duck, Peter & Johnson, Paul, 2020. "Optimal trading of imbalance options for power systems using an energy storage device," European Journal of Operational Research, Elsevier, vol. 285(1), pages 3-22.
    17. Anna Maria Gambaro & Nicola Secomandi, 2021. "A Discussion of Non‐Gaussian Price Processes for Energy and Commodity Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 47-67, January.
    18. Selvaprabu Nadarajah & François Margot & Nicola Secomandi, 2015. "Relaxations of Approximate Linear Programs for the Real Option Management of Commodity Storage," Management Science, INFORMS, vol. 61(12), pages 3054-3076, December.
    19. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    20. Misund, Bård & Oglend, Atle, 2016. "Supply and demand determinants of natural gas price volatility in the U.K.: A vector autoregression approach," Energy, Elsevier, vol. 111(C), pages 178-189.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.01980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.