IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2101.12282.html
   My bibliography  Save this paper

Simple Adaptive Estimation of Quadratic Functionals in Nonparametric IV Models

Author

Listed:
  • Christoph Breunig
  • Xiaohong Chen

Abstract

This paper considers adaptive, minimax estimation of a quadratic functional in a nonparametric instrumental variables (NPIV) model, which is an important problem in optimal estimation of a nonlinear functional of an ill-posed inverse regression with an unknown operator. We first show that a leave-one-out, sieve NPIV estimator of the quadratic functional can attain a convergence rate that coincides with the lower bound previously derived in Chen and Christensen [2018]. The minimax rate is achieved by the optimal choice of the sieve dimension (a key tuning parameter) that depends on the smoothness of the NPIV function and the degree of ill-posedness, both are unknown in practice. We next propose a Lepski-type data-driven choice of the key sieve dimension adaptive to the unknown NPIV model features. The adaptive estimator of the quadratic functional is shown to attain the minimax optimal rate in the severely ill-posed case and in the regular mildly ill-posed case, but up to a multiplicative $\sqrt{\log n}$ factor in the irregular mildly ill-posed case.

Suggested Citation

  • Christoph Breunig & Xiaohong Chen, 2021. "Simple Adaptive Estimation of Quadratic Functionals in Nonparametric IV Models," Papers 2101.12282, arXiv.org, revised Feb 2022.
  • Handle: RePEc:arx:papers:2101.12282
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2101.12282
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Breunig, Christoph & Johannes, Jan, 2016. "Adaptive Estimation Of Functionals In Nonparametric Instrumental Regression," Econometric Theory, Cambridge University Press, vol. 32(3), pages 612-654, June.
    2. Xiaohong Chen & Timothy M. Christensen, 2018. "Optimal sup‐norm rates and uniform inference on nonlinear functionals of nonparametric IV regression," Quantitative Economics, Econometric Society, vol. 9(1), pages 39-84, March.
    3. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Sup-norm Rates, Adaptivity and Inference in Nonparametric Instrumental Variables Estimation," Cowles Foundation Discussion Papers 1923R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    4. Fabian Dunker, 2015. "Adaptive estimation for some nonparametric instrumental variable models," Papers 1511.03977, arXiv.org, revised Aug 2021.
    5. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    6. Christoph Breunig & Xiaohong Chen, 2020. "Adaptive, Rate-Optimal Hypothesis Testing in Nonparametric IV Models," Papers 2006.09587, arXiv.org, revised Nov 2024.
    7. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    8. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    9. Horowitz, Joel L., 2014. "Adaptive nonparametric instrumental variables estimation: Empirical choice of the regularization parameter," Journal of Econometrics, Elsevier, vol. 180(2), pages 158-173.
    10. Breunig, Christoph & Johannes, Jan, 2016. "Adaptive estimation of functionals in nonparametric instrumental regression," LIDAM Reprints ISBA 2016041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Joel L. Horowitz, 2011. "Applied Nonparametric Instrumental Variables Estimation," Econometrica, Econometric Society, vol. 79(2), pages 347-394, March.
    12. Christoph Breunig & Xiaohong Chen, 2020. "Adaptive, Rate-Optimal Testing in Instrumental Variables Models," Cowles Foundation Discussion Papers 2238, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Breunig & Xiaohong Chen, 2020. "Adaptive, Rate-Optimal Hypothesis Testing in Nonparametric IV Models," Papers 2006.09587, arXiv.org, revised Nov 2024.
    2. Jad Beyhum & Elia Lapenta & Pascal Lavergne, 2023. "One-step smoothing splines instrumental regression," Papers 2307.14867, arXiv.org, revised Dec 2024.
    3. Beyhum, Jad & Lapenta, Elia & Lavergne, Pascal, 2023. "One-step nonparametric instrumental regression using smoothing splines," TSE Working Papers 23-1467, Toulouse School of Economics (TSE).
    4. Xiaohong Chen & Timothy M. Christensen, 2015. "Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variables estimation," CeMMAP working papers 32/15, Institute for Fiscal Studies.
    5. Babii, Andrii, 2020. "Honest Confidence Sets In Nonparametric Iv Regression And Other Ill-Posed Models," Econometric Theory, Cambridge University Press, vol. 36(4), pages 658-706, August.
    6. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Sup-norm Rates, Adaptivity and Inference in Nonparametric Instrumental Variables Estimation," Cowles Foundation Discussion Papers 1923R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    7. Escanciano, Juan Carlos & Li, Wei, 2021. "Optimal Linear Instrumental Variables Approximations," Journal of Econometrics, Elsevier, vol. 221(1), pages 223-246.
    8. Xiaohong Chen & Yin Jia Jeff Qiu, 2016. "Methods for Nonparametric and Semiparametric Regressions with Endogeneity: A Gentle Guide," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 259-290, October.
    9. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2020. "Ill-posed estimation in high-dimensional models with instrumental variables," Journal of Econometrics, Elsevier, vol. 219(1), pages 171-200.
    10. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    11. Michael Jansson & Demian Pouzo, 2017. "Towards a General Large Sample Theory for Regularized Estimators," Papers 1712.07248, arXiv.org, revised Jul 2020.
    12. Lu, Junwen & Qu, Zhongjun, 2021. "Sieve estimation of option-implied state price density," Journal of Econometrics, Elsevier, vol. 224(1), pages 88-112.
    13. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    14. Babii, Andrii & Florens, Jean-Pierre, 2017. "Are unobservables separable?," TSE Working Papers 17-802, Toulouse School of Economics (TSE).
    15. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    16. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers 37/13, Institute for Fiscal Studies.
    17. Centorrino, Samuele & Florens, Jean-Pierre, 2021. "Nonparametric Instrumental Variable Estimation of Binary Response Models with Continuous Endogenous Regressors," Econometrics and Statistics, Elsevier, vol. 17(C), pages 35-63.
    18. Andrew Bennett & Nathan Kallus & Xiaojie Mao & Whitney Newey & Vasilis Syrgkanis & Masatoshi Uehara, 2023. "Minimax Instrumental Variable Regression and $L_2$ Convergence Guarantees without Identification or Closedness," Papers 2302.05404, arXiv.org.
    19. Emir Malikov & Shunan Zhao & Subal C. Kumbhakar, 2020. "Estimation of firm‐level productivity in the presence of exports: Evidence from China's manufacturing," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 457-480, June.
    20. Xiaohong Chen & Demian Pouzo, 2014. "Sieve Wald and QLR Inferences on Semi/nonparametric Conditional Moment Models," CeMMAP working papers 38/14, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.12282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.