IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2101.03127.html
   My bibliography  Save this paper

How to Identify Investor's types in real financial markets by means of agent based simulation

Author

Listed:
  • Filippo Neri

Abstract

The paper proposes a computational adaptation of the principles underlying principal component analysis with agent based simulation in order to produce a novel modeling methodology for financial time series and financial markets. Goal of the proposed methodology is to find a reduced set of investor s models (agents) which is able to approximate or explain a target financial time series. As computational testbed for the study, we choose the learning system L FABS which combines simulated annealing with agent based simulation for approximating financial time series. We will also comment on how L FABS s architecture could exploit parallel computation to scale when dealing with massive agent simulations. Two experimental case studies showing the efficacy of the proposed methodology are reported.

Suggested Citation

  • Filippo Neri, 2020. "How to Identify Investor's types in real financial markets by means of agent based simulation," Papers 2101.03127, arXiv.org.
  • Handle: RePEc:arx:papers:2101.03127
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2101.03127
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    2. A. O. I. Hoffmann & S. A. Delre & J. H. Eije & W. Jager, 2006. "Artificial Multi-Agent Stock Markets: Simple Strategies, Complex Outcomes," Lecture Notes in Economics and Mathematical Systems, in: Charlotte Bruun (ed.), Advances in Artificial Economics, chapter 12, pages 167-176, Springer.
    3. Charlotte Bruun, 2003. "The Economy as an Agent-based Whole--Simulating Schumpeterian Dynamics," Industry and Innovation, Taylor & Francis Journals, vol. 10(4), pages 475-491.
    4. Lariviere, Bart & Van den Poel, Dirk, 2007. "Banking behaviour after the lifecycle event of "moving in together": An exploratory study of the role of marketing investments," European Journal of Operational Research, Elsevier, vol. 183(1), pages 345-369, November.
    5. Tesfatsion, Leigh, 2002. "Agent-Based Computational Economics: Growing Economies from the Bottom Up," ISU General Staff Papers 200201010800001251, Iowa State University, Department of Economics.
    6. Axelrod, Robert, 2006. "Agent-based Modeling as a Bridge Between Disciplines," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 33, pages 1565-1584, Elsevier.
    7. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    8. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    9. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tesfatsion, Leigh, 2006. "Agent-Based Computational Modeling And Macroeconomics," Staff General Research Papers Archive 12402, Iowa State University, Department of Economics.
    2. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, September.
    3. Juan Manuel Larrosa, 2016. "Agentes computacionales y análisis económico," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 18(34), pages 87-113, January-J.
    4. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    5. Luca Grilli & Domenico Santoro, 2022. "Forecasting financial time series with Boltzmann entropy through neural networks," Computational Management Science, Springer, vol. 19(4), pages 665-681, October.
    6. Paola Tubaro, 2011. "Computational Economics," Chapters, in: John B. Davis & D. Wade Hands (ed.), The Elgar Companion to Recent Economic Methodology, chapter 10, Edward Elgar Publishing.
    7. Nan Lu, 2018. "La modélisation de l’indice CAC 40 avec un modèle basé agent," Erudite Ph.D Dissertations, Erudite, number ph18-02 edited by François Legendre, September.
    8. Santiago J. Gangotena, 2017. "Dynamic coordinating non-equilibrium," The Review of Austrian Economics, Springer;Society for the Development of Austrian Economics, vol. 30(1), pages 51-82, March.
    9. Serge Hayward, 2011. "Predicting Prices Of Financial Assets: From Classical Economics To Intelligent Finance," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 229-247.
    10. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    11. Karolina Safarzyńska & Jeroen Bergh, 2010. "Evolutionary models in economics: a survey of methods and building blocks," Journal of Evolutionary Economics, Springer, vol. 20(3), pages 329-373, June.
    12. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    13. Stefano Balbi & Carlo Giupponi, 2009. "Reviewing agent-based modelling of socio-ecosystems: a methodology for the analysis of climate change adaptation and sustainability," Working Papers 2009_15, Department of Economics, University of Venice "Ca' Foscari".
    14. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    15. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.
    16. Dirk Helbing & Thomas U. Grund, 2013. "Editorial: Agent-Based Modeling And Techno-Social Systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 16(04n05), pages 1-3.
    17. Cincotti, Silvano & Raberto, Marco & Teglio, Andrea, 2010. "Credit money and macroeconomic instability in the agent-based model and simulator Eurace," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-32.
    18. Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
    19. Daniele Giachini, 2018. "Rationality and Asset Prices under Belief Heterogeneity," LEM Papers Series 2018/07, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. Chueh-Yung Tsao & Ya-Chi Huang, 2018. "Revisiting the issue of survivability and market efficiency with the Santa Fe Artificial Stock Market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(3), pages 537-560, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.03127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.