Deep learning for efficient frontier calculation in finance
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ron Dembo & Dan Rosen, 1999. "The practice of portfolio replication. A practical overview of forward and inverse problems," Annals of Operations Research, Springer, vol. 85(0), pages 267-284, January.
- Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
- Wang, J. & Forsyth, P.A., 2010. "Numerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 207-230, February.
- Eduardo Abi Jaber & Enzo Miller & Huyên Pham, 2020. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Working Papers hal-02877569, HAL.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
- Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
- Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
- Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010.
"A comparison of biased simulation schemes for stochastic volatility models,"
Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
- Roger Lord & Remmert Koekkoek & Dick van Dijk, 2006. "A Comparison of Biased Simulation Schemes for Stochastic Volatility Models," Tinbergen Institute Discussion Papers 06-046/4, Tinbergen Institute, revised 07 Jun 2007.
- Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2020. "Multilevel Monte Carlo with Numerical Smoothing for Robust and Efficient Computation of Probabilities and Densities," Papers 2003.05708, arXiv.org, revised Oct 2023.
- Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
- Annalena Mickel & Andreas Neuenkirch, 2021. "The Weak Convergence Rate of Two Semi-Exact Discretization Schemes for the Heston Model," Risks, MDPI, vol. 9(1), pages 1-38, January.
- repec:hum:wpaper:sfb649dp2007-067 is not listed on IDEAS
- Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
- Alexander Lipton & Andrey Gal & Andris Lasis, 2014. "Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: survey and new results," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1899-1922, November.
- Mordecai Avriel & Jens Hilscher & Alon Raviv, 2013.
"Inflation Derivatives Under Inflation Target Regimes,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(10), pages 911-938, October.
- Mordecai Avriel & Jens Hilscher & Alon Raviv, 2012. "Inflation Derivatives Under Inflation Target Regimes," Working Papers 43, Brandeis University, Department of Economics and International Business School.
- Damien Ackerer & Damir Filipović, 2020. "Option pricing with orthogonal polynomial expansions," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 47-84, January.
- Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
- Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
- Paul Glasserman & Kyoung-Kuk Kim, 2011. "Gamma expansion of the Heston stochastic volatility model," Finance and Stochastics, Springer, vol. 15(2), pages 267-296, June.
- Eric Djeutcha & Jules Sadefo Kamdem, 2024.
"Pricing for a vulnerable bull spread options using a mixed modified fractional Hull–White–Vasicek model,"
Annals of Operations Research, Springer, vol. 334(1), pages 101-131, March.
- Eric Djeutcha & Jules Sadefo Kamdem, 2022. "Pricing for a vulnerable bull spread options using a mixed modified fractional Hull-White-Vasicek model," Post-Print hal-03675886, HAL.
- Nakano Yumiharu, 2006. "Mean-risk optimization for index tracking," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-19, July.
- Masashi Ieda, 2022. "Continuous-Time Portfolio Optimization for Absolute Return Funds," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(4), pages 675-696, December.
- Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
- Alexander Lipton & Andrey Gal & Andris Lasis, 2013. "Pricing of vanilla and first generation exotic options in the local stochastic volatility framework: survey and new results," Papers 1312.5693, arXiv.org.
- Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
- Michael A. Kouritzin, 2018. "Explicit Heston Solutions And Stochastic Approximation For Path-Dependent Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-45, February.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-01-25 (Big Data)
- NEP-CMP-2021-01-25 (Computational Economics)
- NEP-FMK-2021-01-25 (Financial Markets)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.02044. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.