IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.13275.html
   My bibliography  Save this paper

Competitive Location Problems: Balanced Facility Location and the One-Round Manhattan Voronoi Game

Author

Listed:
  • Thomas Byrne
  • S'andor P. Fekete
  • Jorg Kalcsics
  • Linda Kleist

Abstract

We study competitive location problems in a continuous setting, in which facilities have to be placed in a rectangular domain $R$ of normalized dimensions of $1$ and $\rho\geq 1$, and distances are measured according to the Manhattan metric. We show that the family of 'balanced' facility configurations (in which the Voronoi cells of individual facilities are equalized with respect to a number of geometric properties) is considerably richer in this metric than for Euclidean distances. Our main result considers the 'One-Round Voronoi Game' with Manhattan distances, in which first player White and then player Black each place $n$ points in $R$; each player scores the area for which one of its facilities is closer than the facilities of the opponent. We give a tight characterization: White has a winning strategy if and only if $\rho\geq n$; for all other cases, we present a winning strategy for Black.

Suggested Citation

  • Thomas Byrne & S'andor P. Fekete & Jorg Kalcsics & Linda Kleist, 2020. "Competitive Location Problems: Balanced Facility Location and the One-Round Manhattan Voronoi Game," Papers 2011.13275, arXiv.org, revised Sep 2022.
  • Handle: RePEc:arx:papers:2011.13275
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.13275
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antoon Kolen, 1981. "Technical Note—Equivalence between the Direct Search Approach and the Cut Approach to the Rectilinear Distance Location Problem," Operations Research, INFORMS, vol. 29(3), pages 616-620, June.
    2. Sándor P. Fekete & Joseph S. B. Mitchell & Karin Beurer, 2005. "On the Continuous Fermat-Weber Problem," Operations Research, INFORMS, vol. 53(1), pages 61-76, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Byrne & Sándor P. Fekete & Jörg Kalcsics & Linda Kleist, 2023. "Competitive location problems: balanced facility location and the One-Round Manhattan Voronoi Game," Annals of Operations Research, Springer, vol. 321(1), pages 79-101, February.
    2. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    3. Jing Yao & Alan T. Murray, 2014. "Serving regional demand in facility location," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 643-662, August.
    4. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    5. John Gunnar Carlsson & Fan Jia & Ying Li, 2014. "An Approximation Algorithm for the Continuous k -Medians Problem in a Convex Polygon," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 280-289, May.
    6. Sándor P. Fekete & Joseph S. B. Mitchell & Karin Beurer, 2005. "On the Continuous Fermat-Weber Problem," Operations Research, INFORMS, vol. 53(1), pages 61-76, February.
    7. John Gunnar Carlsson & Raghuveer Devulapalli, 2013. "Dividing a Territory Among Several Facilities," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 730-742, November.
    8. Valentin Hartmann & Dominic Schuhmacher, 2020. "Semi-discrete optimal transport: a solution procedure for the unsquared Euclidean distance case," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 133-163, August.
    9. Gérard P. Cachon, 2014. "Retail Store Density and the Cost of Greenhouse Gas Emissions," Management Science, INFORMS, vol. 60(8), pages 1907-1925, August.
    10. Igor Averbakh & Oded Berman & Jörg Kalcsics & Dmitry Krass, 2015. "Structural Properties of Voronoi Diagrams in Facility Location Problems with Continuous Demand," Operations Research, INFORMS, vol. 63(2), pages 394-411, April.
    11. Byrne, Thomas & Kalcsics, Jörg, 2022. "Conditional facility location problems with continuous demand and a polygonal barrier," European Journal of Operational Research, Elsevier, vol. 296(1), pages 22-43.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.13275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.