IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2010.04287.html
   My bibliography  Save this paper

Jump Models with delay -- option pricing and logarithmic Euler-Maruyama scheme

Author

Listed:
  • Nishant Agrawal
  • Yaozhong Hu

Abstract

In this paper, we obtain the existence, uniqueness and positivity of the solution to delayed stochastic differential equations with jumps. This equation is then applied to model the price movement of the risky asset in a financial market and the Black-Scholes formula for the price of European options is obtained together with the hedging portfolios. The option price is evaluated analytically at the last delayed period by using the Fourier transformation technique. But in general, there is no analytical expression for the option price. To evaluate the price numerically we then use the Monte-Carlo method. To this end, we need to simulate the delayed stochastic differential equations with jumps. We propose a logarithmic Euler-Maruyama scheme to approximate the equation and prove that all the approximations remain positive and the rate of convergence of the scheme is proved to be $0.5$.

Suggested Citation

  • Nishant Agrawal & Yaozhong Hu, 2020. "Jump Models with delay -- option pricing and logarithmic Euler-Maruyama scheme," Papers 2010.04287, arXiv.org, revised Oct 2020.
  • Handle: RePEc:arx:papers:2010.04287
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2010.04287
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. Zaheer Imdad & Tusheng Zhang, 2014. "Pricing European options in a delay model with jumps," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-13.
    4. Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
    5. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    6. Ole E. Barndorff-Nielsen, 1997. "Processes of normal inverse Gaussian type," Finance and Stochastics, Springer, vol. 2(1), pages 41-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishant Agrawal & Yaozhong Hu, 2020. "Jump Models with Delay—Option Pricing and Logarithmic Euler–Maruyama Scheme," Mathematics, MDPI, vol. 8(11), pages 1-21, November.
    2. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    3. Jin-Yu Zhang & Wen-Bo Wu & Yong Li & Zhu-Sheng Lou, 2021. "Pricing Exotic Option Under Jump-Diffusion Models by the Quadrature Method," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 867-884, October.
    4. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    5. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    6. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    7. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    8. Helin Zhu & Fan Ye & Enlu Zhou, 2015. "Fast estimation of true bounds on Bermudan option prices under jump-diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1885-1900, November.
    9. Huiling Wu, 2013. "Mean-Variance Portfolio Selection with a Stochastic Cash Flow in a Markov-switching Jump–Diffusion Market," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 918-934, September.
    10. Xindan Li & Dan Tang & Yongjin Wang & Xuewei Yang, 2014. "Optimal processing rate and buffer size of a jump-diffusion processing system," Annals of Operations Research, Springer, vol. 217(1), pages 319-335, June.
    11. Yu, Jianfeng & Xu, Weidong, 2016. "Pricing turbo warrants under mixed-exponential jump diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 490-501.
    12. Brignone, Riccardo & Kyriakou, Ioannis & Fusai, Gianluca, 2021. "Moment-matching approximations for stochastic sums in non-Gaussian Ornstein–Uhlenbeck models," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 232-247.
    13. Shi, Chao, 2022. "Asymptotic Analysis of the Mixed-Exponential Jump Diffusion Model and Its Financial Applications," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    14. Gurdip Bakshi & John Crosby & Xiaohui Gao, 2023. "Dark Matter in (Volatility and) Equity Option Risk Premiums," Papers 2303.16371, arXiv.org.
    15. Ludovic Mathys, 2019. "On Extensions of the Barone-Adesi & Whaley Method to Price American-Type Options," Papers 1912.00454, arXiv.org.
    16. Cai, Ning & Sun, Lihua, 2014. "Valuation of stock loans with jump risk," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 213-241.
    17. Walter Farkas & Ludovic Mathys, 2020. "Geometric Step Options with Jumps. Parity Relations, PIDEs, and Semi-Analytical Pricing," Papers 2002.09911, arXiv.org.
    18. Daniel Hackmann, 2017. "Analytic techniques for option pricing under a hyperexponential L\'{e}vy model," Papers 1705.05934, arXiv.org.
    19. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    20. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.04287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.