IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2010.03606.html
   My bibliography  Save this paper

Interpreting Unconditional Quantile Regression with Conditional Independence

Author

Listed:
  • David M. Kaplan

Abstract

This note provides additional interpretation for the counterfactual outcome distribution and corresponding unconditional quantile "effects" defined and estimated by Firpo, Fortin, and Lemieux (2009) and Chernozhukov, Fern\'andez-Val, and Melly (2013). With conditional independence of the policy variable of interest, these methods estimate the policy effect for certain types of policies, but not others. In particular, they estimate the effect of a policy change that itself satisfies conditional independence.

Suggested Citation

  • David M. Kaplan, 2020. "Interpreting Unconditional Quantile Regression with Conditional Independence," Papers 2010.03606, arXiv.org, revised Oct 2021.
  • Handle: RePEc:arx:papers:2010.03606
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2010.03606
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6a.
    3. J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6b.
    4. Edward Vytlacil & James J. Heckman, 2001. "Policy-Relevant Treatment Effects," American Economic Review, American Economic Association, vol. 91(2), pages 107-111, May.
    5. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    6. James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part I: Causal Models, Structural Models and Econometric Policy Evaluation," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 70, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez-Iriarte, Julian & Sun, Yixiao, 2021. "Identification and Estimation of Unconditional Policy Effects of an Endogenous Binary Treatment: an Unconditional MTE Approach," University of California at San Diego, Economics Working Paper Series qt2bc57830, Department of Economics, UC San Diego.
    2. Julian Martinez-Iriarte & Yixiao Sun, 2020. "Identification and Estimation of Unconditional Policy Effects of an Endogenous Binary Treatment: An Unconditional MTE Approach," Papers 2010.15864, arXiv.org, revised Aug 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David M. Kaplan, 2019. "Interpreting Unconditional Quantile Regression with Conditional Independence," Working Papers 1912, Department of Economics, University of Missouri, revised 08 Nov 2020.
    2. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    3. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    4. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    5. Michel Mouchart & Renzo Orsi, 2016. "Building a Structural Model: Parameterization and Structurality," Econometrics, MDPI, vol. 4(2), pages 1-16, April.
    6. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    7. Andrew M. Jones, 2007. "Identification of treatment effects in Health Economics," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1127-1131.
    8. Peter Howard-Jones & Jens Hölscher & Dragana Radicic, 2017. "Firm Productivity In The Western Balkans: The Impact Of European Union Membership And Access To Finance," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 62(215), pages 7-52, October –.
    9. Girum Abebe & Marcel Fafchamps & Michael Koelle & Simon Quinn, 2019. "Learning Management Through Matching: A Field Experiment Using Mechanism Design," CSAE Working Paper Series 2019-11, Centre for the Study of African Economies, University of Oxford.
    10. Francesco Agostinelli & Emilio Borghesan & Giuseppe Sorrenti, 2020. "Welfare, Workfare and Labor Supply: A Unified Evaluation," Working Papers 2020-083, Human Capital and Economic Opportunity Working Group.
    11. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    12. van den Berg, Gerard J. & Bonev, Petyo & Mammen, Enno, 2016. "Nonparametric Instrumental Variable Methods for Dynamic Treatment Evaluation," IZA Discussion Papers 9782, Institute of Labor Economics (IZA).
    13. Guido W. Imbens, 2015. "Matching Methods in Practice: Three Examples," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 373-419.
    14. Chernozhukov, Victor & Kasahara, Hiroyuki & Schrimpf, Paul, 2021. "Causal impact of masks, policies, behavior on early covid-19 pandemic in the U.S," Journal of Econometrics, Elsevier, vol. 220(1), pages 23-62.
    15. Christopher J. Bennett & Ričardas Zitikis, 2013. "Examining the Distributional Effects of Military Service on Earnings: A Test of Initial Dominance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 1-15, January.
    16. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024. "ddml: Double/debiased machine learning in Stata," Stata Journal, StataCorp LP, vol. 24(1), pages 3-45, March.
    17. Francesca Caselli & Mr. Philippe Wingender, 2018. "Bunching at 3 Percent: The Maastricht Fiscal Criterion and Government Deficits," IMF Working Papers 2018/182, International Monetary Fund.
    18. Cattaneo, Matias D. & Jansson, Michael & Newey, Whitney K., 2018. "Alternative Asymptotics And The Partially Linear Model With Many Regressors," Econometric Theory, Cambridge University Press, vol. 34(2), pages 277-301, April.
    19. James Berry & Greg Fischer & Raymond Guiteras, 2020. "Eliciting and Utilizing Willingness to Pay: Evidence from Field Trials in Northern Ghana," Journal of Political Economy, University of Chicago Press, vol. 128(4), pages 1436-1473.
    20. John M. Antle & Claudio O. Stöckle, 2017. "Climate Impacts on Agriculture: Insights from Agronomic-Economic Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 299-318.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.03606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.